
Stochastic Gradient Descent. Finite-sum
problems. Advanced stochastic methods.
Adaptivity and variance reduction. Stories
from modern Machine Learning from the

optimization perspective

Daniil Merkulov

Applied Math for Data Science. Sberuniversity.

v § } 1

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence rate reminder

Convergence rate reminder v § } 2

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence rate

Figure 1: Difference between the convergence speed
Convergence rate reminder v § } 3

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem

Finite-sum problem v § } 4

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min
x∈Rp

f(x) = min
x∈Rp

1
n

n∑
i=1

fi(x)

The gradient descent acts like follows:

xk+1 = xk − αk

n

n∑
i=1

∇fi(x) (GD)

• Convergence with constant α or line search.

• Iteration cost is linear in n. For ImageNet n ≈ 1.4 · 107, for WikiText n ≈ 108.

Let’s/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose ik index of point
at each iteration uniformly:

xk+1 = xk − αk∇fik (xk) (SGD)
With p(ik = i) = 1

n
, the stochastic gradient is an unbiased estimate of the gradient, given by:

E[∇fik (x)] =
n∑

i=1

p(ik = i)∇fi(x) =
n∑

i=1

1
n

∇fi(x) = 1
n

n∑
i=1

∇fi(x) = ∇f(x)

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).

Finite-sum problem v § } 5

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min
x∈Rp

f(x) = min
x∈Rp

1
n

n∑
i=1

fi(x)

The gradient descent acts like follows:

xk+1 = xk − αk

n

n∑
i=1

∇fi(x) (GD)

• Convergence with constant α or line search.
• Iteration cost is linear in n. For ImageNet n ≈ 1.4 · 107, for WikiText n ≈ 108.

Let’s/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose ik index of point
at each iteration uniformly:

xk+1 = xk − αk∇fik (xk) (SGD)
With p(ik = i) = 1

n
, the stochastic gradient is an unbiased estimate of the gradient, given by:

E[∇fik (x)] =
n∑

i=1

p(ik = i)∇fi(x) =
n∑

i=1

1
n

∇fi(x) = 1
n

n∑
i=1

∇fi(x) = ∇f(x)

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).

Finite-sum problem v § } 5

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min
x∈Rp

f(x) = min
x∈Rp

1
n

n∑
i=1

fi(x)

The gradient descent acts like follows:

xk+1 = xk − αk

n

n∑
i=1

∇fi(x) (GD)

• Convergence with constant α or line search.
• Iteration cost is linear in n. For ImageNet n ≈ 1.4 · 107, for WikiText n ≈ 108.

Let’s/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose ik index of point
at each iteration uniformly:

xk+1 = xk − αk∇fik (xk) (SGD)
With p(ik = i) = 1

n
, the stochastic gradient is an unbiased estimate of the gradient, given by:

E[∇fik (x)] =
n∑

i=1

p(ik = i)∇fi(x) =
n∑

i=1

1
n

∇fi(x) = 1
n

n∑
i=1

∇fi(x) = ∇f(x)

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).

Finite-sum problem v § } 5

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min
x∈Rp

f(x) = min
x∈Rp

1
n

n∑
i=1

fi(x)

The gradient descent acts like follows:

xk+1 = xk − αk

n

n∑
i=1

∇fi(x) (GD)

• Convergence with constant α or line search.
• Iteration cost is linear in n. For ImageNet n ≈ 1.4 · 107, for WikiText n ≈ 108.

Let’s/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose ik index of point
at each iteration uniformly:

xk+1 = xk − αk∇fik (xk) (SGD)
With p(ik = i) = 1

n
, the stochastic gradient is an unbiased estimate of the gradient, given by:

E[∇fik (x)] =
n∑

i=1

p(ik = i)∇fi(x) =
n∑

i=1

1
n

∇fi(x) = 1
n

n∑
i=1

∇fi(x) = ∇f(x)

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).
Finite-sum problem v § } 5

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/ε)) O(1/ε)

Convex O(1/ε) O(1/ε2)
Non-Convex O(1/ε) O(1/ε2)

• Stochastic has low iteration cost but slow convergence rate.

• Sublinear rate even in strongly-convex case.
• Bounds are unimprovable under standard assumptions.
• Oracle returns an unbiased gradient approximation with bounded variance.

• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve
constant factors (bottleneck is variance, not condition number).

Finite-sum problem v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/ε)) O(1/ε)

Convex O(1/ε) O(1/ε2)
Non-Convex O(1/ε) O(1/ε2)

• Stochastic has low iteration cost but slow convergence rate.
• Sublinear rate even in strongly-convex case.

• Bounds are unimprovable under standard assumptions.
• Oracle returns an unbiased gradient approximation with bounded variance.

• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve
constant factors (bottleneck is variance, not condition number).

Finite-sum problem v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/ε)) O(1/ε)

Convex O(1/ε) O(1/ε2)
Non-Convex O(1/ε) O(1/ε2)

• Stochastic has low iteration cost but slow convergence rate.
• Sublinear rate even in strongly-convex case.
• Bounds are unimprovable under standard assumptions.

• Oracle returns an unbiased gradient approximation with bounded variance.
• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve

constant factors (bottleneck is variance, not condition number).

Finite-sum problem v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/ε)) O(1/ε)

Convex O(1/ε) O(1/ε2)
Non-Convex O(1/ε) O(1/ε2)

• Stochastic has low iteration cost but slow convergence rate.
• Sublinear rate even in strongly-convex case.
• Bounds are unimprovable under standard assumptions.
• Oracle returns an unbiased gradient approximation with bounded variance.

• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve
constant factors (bottleneck is variance, not condition number).

Finite-sum problem v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/ε)) O(1/ε)

Convex O(1/ε) O(1/ε2)
Non-Convex O(1/ε) O(1/ε2)

• Stochastic has low iteration cost but slow convergence rate.
• Sublinear rate even in strongly-convex case.
• Bounds are unimprovable under standard assumptions.
• Oracle returns an unbiased gradient approximation with bounded variance.

• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve
constant factors (bottleneck is variance, not condition number).

Finite-sum problem v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) v § } 7

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Typical behaviour

Figure 2: “Divergence”
Stochastic Gradient Descent (SGD) v § } 8

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence
Lipschitz continiity implies:

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩ + L

2 ∥xk+1 − xk∥2

using (SGD):
f(xk+1) ≤ f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2

k
L

2 ∥∇fik (xk)∥2

Now let’s take expectation with respect to ik:

E[f(xk+1)] ≤ E[f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2
k

L

2 ∥∇fik (xk)∥2]

Using linearity of expectation:

E[f(xk+1)] ≤ f(xk) − αk⟨∇f(xk),E[∇fik (xk)]⟩ + α2
k

L

2 E[∥∇fik (xk)∥2]

Since uniform sampling implies unbiased estimate of gradient: E[∇fik (xk)] = ∇f(xk):

E[f(xk+1)] ≤ f(xk) − αk∥∇f(xk)∥2 + α2
k

L

2 E[∥∇fik (xk)∥2]

Stochastic Gradient Descent (SGD) v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence
Lipschitz continiity implies:

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩ + L

2 ∥xk+1 − xk∥2

using (SGD):
f(xk+1) ≤ f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2

k
L

2 ∥∇fik (xk)∥2

Now let’s take expectation with respect to ik:

E[f(xk+1)] ≤ E[f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2
k

L

2 ∥∇fik (xk)∥2]

Using linearity of expectation:

E[f(xk+1)] ≤ f(xk) − αk⟨∇f(xk),E[∇fik (xk)]⟩ + α2
k

L

2 E[∥∇fik (xk)∥2]

Since uniform sampling implies unbiased estimate of gradient: E[∇fik (xk)] = ∇f(xk):

E[f(xk+1)] ≤ f(xk) − αk∥∇f(xk)∥2 + α2
k

L

2 E[∥∇fik (xk)∥2]

Stochastic Gradient Descent (SGD) v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence
Lipschitz continiity implies:

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩ + L

2 ∥xk+1 − xk∥2

using (SGD):
f(xk+1) ≤ f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2

k
L

2 ∥∇fik (xk)∥2

Now let’s take expectation with respect to ik:

E[f(xk+1)] ≤ E[f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2
k

L

2 ∥∇fik (xk)∥2]

Using linearity of expectation:

E[f(xk+1)] ≤ f(xk) − αk⟨∇f(xk),E[∇fik (xk)]⟩ + α2
k

L

2 E[∥∇fik (xk)∥2]

Since uniform sampling implies unbiased estimate of gradient: E[∇fik (xk)] = ∇f(xk):

E[f(xk+1)] ≤ f(xk) − αk∥∇f(xk)∥2 + α2
k

L

2 E[∥∇fik (xk)∥2]

Stochastic Gradient Descent (SGD) v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence
Lipschitz continiity implies:

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩ + L

2 ∥xk+1 − xk∥2

using (SGD):
f(xk+1) ≤ f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2

k
L

2 ∥∇fik (xk)∥2

Now let’s take expectation with respect to ik:

E[f(xk+1)] ≤ E[f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2
k

L

2 ∥∇fik (xk)∥2]

Using linearity of expectation:

E[f(xk+1)] ≤ f(xk) − αk⟨∇f(xk),E[∇fik (xk)]⟩ + α2
k

L

2 E[∥∇fik (xk)∥2]

Since uniform sampling implies unbiased estimate of gradient: E[∇fik (xk)] = ∇f(xk):

E[f(xk+1)] ≤ f(xk) − αk∥∇f(xk)∥2 + α2
k

L

2 E[∥∇fik (xk)∥2]

Stochastic Gradient Descent (SGD) v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence
Lipschitz continiity implies:

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩ + L

2 ∥xk+1 − xk∥2

using (SGD):
f(xk+1) ≤ f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2

k
L

2 ∥∇fik (xk)∥2

Now let’s take expectation with respect to ik:

E[f(xk+1)] ≤ E[f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2
k

L

2 ∥∇fik (xk)∥2]

Using linearity of expectation:

E[f(xk+1)] ≤ f(xk) − αk⟨∇f(xk),E[∇fik (xk)]⟩ + α2
k

L

2 E[∥∇fik (xk)∥2]

Since uniform sampling implies unbiased estimate of gradient: E[∇fik (xk)] = ∇f(xk):

E[f(xk+1)] ≤ f(xk) − αk∥∇f(xk)∥2 + α2
k

L

2 E[∥∇fik (xk)∥2]

Stochastic Gradient Descent (SGD) v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

1
2∥∇f(x)∥2

2 ≥ µ(f(x) − f∗), ∀x ∈ Rp (PL)

This inequality simply requires that the gradient grows faster than a quadratic function as we move away from the
optimal function value. Note, that strong convexity implies PL, but not vice versa. Using PL we can write:

E[f(xk+1)] − f∗ ≤ (1 − 2αkµ)[f(xk) − f∗] + α2
k

L

2 E[∥∇fik (xk)∥2]

This bound already indicates, that we have something like linear convergence if far from solution and gradients are
similar, but no progress if close to solution or have high variance in gradients at the same time.

Now we assume, that the variance of the stochastic gradients is bounded:

E[∥∇fi(xk)∥2] ≤ σ2

Thus, we have

E[f(xk+1) − f∗] ≤ (1 − 2αkµ)[f(xk) − f∗] + Lσ2α2
k

2 .

Stochastic Gradient Descent (SGD) v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

1
2∥∇f(x)∥2

2 ≥ µ(f(x) − f∗), ∀x ∈ Rp (PL)

This inequality simply requires that the gradient grows faster than a quadratic function as we move away from the
optimal function value. Note, that strong convexity implies PL, but not vice versa. Using PL we can write:

E[f(xk+1)] − f∗ ≤ (1 − 2αkµ)[f(xk) − f∗] + α2
k

L

2 E[∥∇fik (xk)∥2]

This bound already indicates, that we have something like linear convergence if far from solution and gradients are
similar, but no progress if close to solution or have high variance in gradients at the same time.

Now we assume, that the variance of the stochastic gradients is bounded:

E[∥∇fi(xk)∥2] ≤ σ2

Thus, we have

E[f(xk+1) − f∗] ≤ (1 − 2αkµ)[f(xk) − f∗] + Lσ2α2
k

2 .

Stochastic Gradient Descent (SGD) v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

1
2∥∇f(x)∥2

2 ≥ µ(f(x) − f∗), ∀x ∈ Rp (PL)

This inequality simply requires that the gradient grows faster than a quadratic function as we move away from the
optimal function value. Note, that strong convexity implies PL, but not vice versa. Using PL we can write:

E[f(xk+1)] − f∗ ≤ (1 − 2αkµ)[f(xk) − f∗] + α2
k

L

2 E[∥∇fik (xk)∥2]

This bound already indicates, that we have something like linear convergence if far from solution and gradients are
similar, but no progress if close to solution or have high variance in gradients at the same time.

Now we assume, that the variance of the stochastic gradients is bounded:

E[∥∇fi(xk)∥2] ≤ σ2

Thus, we have

E[f(xk+1) − f∗] ≤ (1 − 2αkµ)[f(xk) − f∗] + Lσ2α2
k

2 .

Stochastic Gradient Descent (SGD) v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

1
2∥∇f(x)∥2

2 ≥ µ(f(x) − f∗), ∀x ∈ Rp (PL)

This inequality simply requires that the gradient grows faster than a quadratic function as we move away from the
optimal function value. Note, that strong convexity implies PL, but not vice versa. Using PL we can write:

E[f(xk+1)] − f∗ ≤ (1 − 2αkµ)[f(xk) − f∗] + α2
k

L

2 E[∥∇fik (xk)∥2]

This bound already indicates, that we have something like linear convergence if far from solution and gradients are
similar, but no progress if close to solution or have high variance in gradients at the same time.

Now we assume, that the variance of the stochastic gradients is bounded:

E[∥∇fi(xk)∥2] ≤ σ2

Thus, we have

E[f(xk+1) − f∗] ≤ (1 − 2αkµ)[f(xk) − f∗] + Lσ2α2
k

2 .

Stochastic Gradient Descent (SGD) v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

1
2∥∇f(x)∥2

2 ≥ µ(f(x) − f∗), ∀x ∈ Rp (PL)

This inequality simply requires that the gradient grows faster than a quadratic function as we move away from the
optimal function value. Note, that strong convexity implies PL, but not vice versa. Using PL we can write:

E[f(xk+1)] − f∗ ≤ (1 − 2αkµ)[f(xk) − f∗] + α2
k

L

2 E[∥∇fik (xk)∥2]

This bound already indicates, that we have something like linear convergence if far from solution and gradients are
similar, but no progress if close to solution or have high variance in gradients at the same time.

Now we assume, that the variance of the stochastic gradients is bounded:

E[∥∇fi(xk)∥2] ≤ σ2

Thus, we have

E[f(xk+1) − f∗] ≤ (1 − 2αkµ)[f(xk) − f∗] + Lσ2α2
k

2 .

Stochastic Gradient Descent (SGD) v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.
1. Consider decreasing stepsize strategy with αk = 2k+1

2µ(k+1)2 we obtain

E[f(xk+1) − f∗] ≤ k2

(k + 1)2 [f(xk) − f∗] + Lσ2(2k + 1)2|
8µ2(k + 1)4

2. Multiplying both sides by (k + 1)2 and letting δf (k) ≡ k2E[f(xk) − f∗] we get

δf (k + 1) ≤ δf (k) + Lσ2(2k + 1)2

8µ2(k + 1)2

≤ δf (k) + Lσ2

2µ2 ,

where the second line follows from 2k+1
k+1 < 2. Summing up this inequality from k = 0 to k and using the fact that

δf (0) = 0 we get

δf (k + 1) ≤ δf (0) + Lσ2

2µ2

k∑
i=0

1 ≤ Lσ2(k + 1)
2µ2 ⇒ (k + 1)2E[f(xk+1) − f∗] ≤ Lσ2(k + 1)

2µ2

which gives the stated rate.

Stochastic Gradient Descent (SGD) v § } 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.
1. Consider decreasing stepsize strategy with αk = 2k+1

2µ(k+1)2 we obtain

E[f(xk+1) − f∗] ≤ k2

(k + 1)2 [f(xk) − f∗] + Lσ2(2k + 1)2|
8µ2(k + 1)4

2. Multiplying both sides by (k + 1)2 and letting δf (k) ≡ k2E[f(xk) − f∗] we get

δf (k + 1) ≤ δf (k) + Lσ2(2k + 1)2

8µ2(k + 1)2

≤ δf (k) + Lσ2

2µ2 ,

where the second line follows from 2k+1
k+1 < 2. Summing up this inequality from k = 0 to k and using the fact that

δf (0) = 0 we get

δf (k + 1) ≤ δf (0) + Lσ2

2µ2

k∑
i=0

1 ≤ Lσ2(k + 1)
2µ2 ⇒ (k + 1)2E[f(xk+1) − f∗] ≤ Lσ2(k + 1)

2µ2

which gives the stated rate.

Stochastic Gradient Descent (SGD) v § } 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.
1. Consider decreasing stepsize strategy with αk = 2k+1

2µ(k+1)2 we obtain

E[f(xk+1) − f∗] ≤ k2

(k + 1)2 [f(xk) − f∗] + Lσ2(2k + 1)2|
8µ2(k + 1)4

2. Multiplying both sides by (k + 1)2 and letting δf (k) ≡ k2E[f(xk) − f∗] we get

δf (k + 1) ≤ δf (k) + Lσ2(2k + 1)2

8µ2(k + 1)2

≤ δf (k) + Lσ2

2µ2 ,

where the second line follows from 2k+1
k+1 < 2. Summing up this inequality from k = 0 to k and using the fact that

δf (0) = 0 we get

δf (k + 1) ≤ δf (0) + Lσ2

2µ2

k∑
i=0

1 ≤ Lσ2(k + 1)
2µ2 ⇒ (k + 1)2E[f(xk+1) − f∗] ≤ Lσ2(k + 1)

2µ2

which gives the stated rate.

Stochastic Gradient Descent (SGD) v § } 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.
1. Consider decreasing stepsize strategy with αk = 2k+1

2µ(k+1)2 we obtain

E[f(xk+1) − f∗] ≤ k2

(k + 1)2 [f(xk) − f∗] + Lσ2(2k + 1)2|
8µ2(k + 1)4

2. Multiplying both sides by (k + 1)2 and letting δf (k) ≡ k2E[f(xk) − f∗] we get

δf (k + 1) ≤ δf (k) + Lσ2(2k + 1)2

8µ2(k + 1)2

≤ δf (k) + Lσ2

2µ2 ,

where the second line follows from 2k+1
k+1 < 2. Summing up this inequality from k = 0 to k and using the fact that

δf (0) = 0 we get

δf (k + 1) ≤ δf (0) + Lσ2

2µ2

k∑
i=0

1 ≤ Lσ2(k + 1)
2µ2 ⇒ (k + 1)2E[f(xk+1) − f∗] ≤ Lσ2(k + 1)

2µ2

which gives the stated rate.

Stochastic Gradient Descent (SGD) v § } 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

3. Constant step size: Choosing αk = α for any α < 1/2µ yields

E[f(xk+1) − f∗] ≤ (1 − 2αµ)k[f(x0) − f∗] + Lσ2α2

2

k∑
i=0

(1 − 2αµ)i

≤ (1 − 2αµ)k[f(x0) − f∗] + Lσ2α2

2

∞∑
i=0

(1 − 2αµ)i

= (1 − 2αµ)k[f(x0) − f∗] + Lσ2α

4µ
,

where the last line uses that α < 1/2µ and the limit of the geometric series.

Stochastic Gradient Descent (SGD) v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Mini-batch SGD

Mini-batch SGD v § } 13

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Mini-batch SGD
Approach 1: Control the sample size
The deterministic method uses all n gradients:

∇f(xk) = 1
n

n∑
i=1

∇fi(xk).

The stochastic method approximates this using just 1 sample:

∇fik(xk) ≈ 1
n

n∑
i=1

∇fi(xk).

A common variant is to use a larger sample Bk (“mini-batch”):

1
|Bk|

∑
i∈Bk

∇fi(xk) ≈ 1
n

n∑
i=1

∇fi(xk),

particularly useful for vectorization and parallelization.
For example, with 16 cores set |Bk| = 16 and compute 16 gradients at once.

Mini-batch SGD v § } 14

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Mini-Batching as Gradient Descent with Error

The SG method with a sample Bk (“mini-batch”) uses iterations:

xk+1 = xk − αk

(
1

|Bk|
∑
i∈Bk

∇fi(xk)

)
.

Let’s view this as a “gradient method with error”:

xk+1 = xk − αk(∇f(xk) + ek),

where ek is the difference between the approximate and true gradient.

If you use αk = 1
L

, then using the descent lemma, this algorithm has:

f(xk+1) ≤ f(xk) − 1
2L

∥∇f(xk)∥2 + 1
2L

∥ek∥2,

for any error ek.

Mini-batch SGD v § } 15

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Effect of Error on Convergence Rate

Our progress bound with αk = 1
L

and error in the gradient of ek is:

f(xk+1) ≤ f(xk) − 1
2L

∥∇f(xk)∥2 + 1
2L

∥ek∥2.

Connection between “error-free” rate and “with error” rate:
• If the “error-free” rate is O(1

k
), you maintain this rate if ∥ek∥2 = O(1

k
).

• If the “error-free” rate is O(ρk), you maintain this rate if ∥ek∥2 = O(ρk).
If the error goes to zero more slowly, then the rate at which it goes to zero becomes the bottleneck.
So, to understand the effect of batch size, we need to know how |Bk| affects ∥ek∥2.

Mini-batch SGD v § } 16

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Effect of Error on Convergence Rate

Our progress bound with αk = 1
L

and error in the gradient of ek is:

f(xk+1) ≤ f(xk) − 1
2L

∥∇f(xk)∥2 + 1
2L

∥ek∥2.

Connection between “error-free” rate and “with error” rate:
• If the “error-free” rate is O(1

k
), you maintain this rate if ∥ek∥2 = O(1

k
).

• If the “error-free” rate is O(ρk), you maintain this rate if ∥ek∥2 = O(ρk).

If the error goes to zero more slowly, then the rate at which it goes to zero becomes the bottleneck.
So, to understand the effect of batch size, we need to know how |Bk| affects ∥ek∥2.

Mini-batch SGD v § } 16

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Effect of Error on Convergence Rate

Our progress bound with αk = 1
L

and error in the gradient of ek is:

f(xk+1) ≤ f(xk) − 1
2L

∥∇f(xk)∥2 + 1
2L

∥ek∥2.

Connection between “error-free” rate and “with error” rate:
• If the “error-free” rate is O(1

k
), you maintain this rate if ∥ek∥2 = O(1

k
).

• If the “error-free” rate is O(ρk), you maintain this rate if ∥ek∥2 = O(ρk).

If the error goes to zero more slowly, then the rate at which it goes to zero becomes the bottleneck.
So, to understand the effect of batch size, we need to know how |Bk| affects ∥ek∥2.

Mini-batch SGD v § } 16

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Effect of Error on Convergence Rate

Our progress bound with αk = 1
L

and error in the gradient of ek is:

f(xk+1) ≤ f(xk) − 1
2L

∥∇f(xk)∥2 + 1
2L

∥ek∥2.

Connection between “error-free” rate and “with error” rate:
• If the “error-free” rate is O(1

k
), you maintain this rate if ∥ek∥2 = O(1

k
).

• If the “error-free” rate is O(ρk), you maintain this rate if ∥ek∥2 = O(ρk).
If the error goes to zero more slowly, then the rate at which it goes to zero becomes the bottleneck.
So, to understand the effect of batch size, we need to know how |Bk| affects ∥ek∥2.

Mini-batch SGD v § } 16

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Main problem of SGD

f(x) = µ

2 ∥x∥2
2 + 1

m

m∑
i=1

log(1 + exp(−yi⟨ai, x⟩)) → min
x∈Rn

0 25 50 75 100
Iteration

10 8

10 6

10 4

10 2

100

|f(
x)

f* |

0 25 50 75 100
Iteration

10 4

10 3

10 2

10 1

100

x k
x

*

0 100000200000300000400000
FLOPS

10 8

10 6

10 4

10 2

100

|f(
x)

f* |

Strongly convex binary logistic regression. m=200, n=10, mu=1.

SGD SGD batch 10 SGD batch 50 SGD batch 100 GD

Mini-batch SGD v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Conclusions

• SGD with fixed learning rate does not converge even for PL (strongly convex) case

• SGD achieves sublinear convergence with rate O
(

1
k

)
for PL-case.

• Nesterov/Polyak accelerations do not improve convergence rate
• Two-phase Newton-like method achieves O

(
1
k

)
without strong convexity.

Mini-batch SGD v § } 18

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Conclusions

• SGD with fixed learning rate does not converge even for PL (strongly convex) case
• SGD achieves sublinear convergence with rate O

(
1
k

)
for PL-case.

• Nesterov/Polyak accelerations do not improve convergence rate
• Two-phase Newton-like method achieves O

(
1
k

)
without strong convexity.

Mini-batch SGD v § } 18

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Conclusions

• SGD with fixed learning rate does not converge even for PL (strongly convex) case
• SGD achieves sublinear convergence with rate O

(
1
k

)
for PL-case.

• Nesterov/Polyak accelerations do not improve convergence rate

• Two-phase Newton-like method achieves O
(

1
k

)
without strong convexity.

Mini-batch SGD v § } 18

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Conclusions

• SGD with fixed learning rate does not converge even for PL (strongly convex) case
• SGD achieves sublinear convergence with rate O

(
1
k

)
for PL-case.

• Nesterov/Polyak accelerations do not improve convergence rate
• Two-phase Newton-like method achieves O

(
1
k

)
without strong convexity.

Mini-batch SGD v § } 18

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem

Finite-sum problem v § } 19

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min
x∈Rp

f(x) = min
x∈Rp

1
n

n∑
i=1

fi(x)

The gradient descent acts like follows:

xk+1 = xk − αk

n

n∑
i=1

∇fi(x) (GD)

• Iteration cost is linear in n.

• Convergence with constant α or line search.

Let’s/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose ik index of point
at each iteration uniformly:

xk+1 = xk − αk∇fik (xk) (SGD)
With p(ik = i) = 1

n
, the stochastic gradient is an unbiased estimate of the gradient, given by:

E[∇fik (x)] =
n∑

i=1

p(ik = i)∇fi(x) =
n∑

i=1

1
n

∇fi(x) = 1
n

n∑
i=1

∇fi(x) = ∇f(x)

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).

Finite-sum problem v § } 20

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min
x∈Rp

f(x) = min
x∈Rp

1
n

n∑
i=1

fi(x)

The gradient descent acts like follows:

xk+1 = xk − αk

n

n∑
i=1

∇fi(x) (GD)

• Iteration cost is linear in n.
• Convergence with constant α or line search.

Let’s/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose ik index of point
at each iteration uniformly:

xk+1 = xk − αk∇fik (xk) (SGD)
With p(ik = i) = 1

n
, the stochastic gradient is an unbiased estimate of the gradient, given by:

E[∇fik (x)] =
n∑

i=1

p(ik = i)∇fi(x) =
n∑

i=1

1
n

∇fi(x) = 1
n

n∑
i=1

∇fi(x) = ∇f(x)

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).

Finite-sum problem v § } 20

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min
x∈Rp

f(x) = min
x∈Rp

1
n

n∑
i=1

fi(x)

The gradient descent acts like follows:

xk+1 = xk − αk

n

n∑
i=1

∇fi(x) (GD)

• Iteration cost is linear in n.
• Convergence with constant α or line search.

Let’s/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose ik index of point
at each iteration uniformly:

xk+1 = xk − αk∇fik (xk) (SGD)
With p(ik = i) = 1

n
, the stochastic gradient is an unbiased estimate of the gradient, given by:

E[∇fik (x)] =
n∑

i=1

p(ik = i)∇fi(x) =
n∑

i=1

1
n

∇fi(x) = 1
n

n∑
i=1

∇fi(x) = ∇f(x)

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).

Finite-sum problem v § } 20

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min
x∈Rp

f(x) = min
x∈Rp

1
n

n∑
i=1

fi(x)

The gradient descent acts like follows:

xk+1 = xk − αk

n

n∑
i=1

∇fi(x) (GD)

• Iteration cost is linear in n.
• Convergence with constant α or line search.

Let’s/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose ik index of point
at each iteration uniformly:

xk+1 = xk − αk∇fik (xk) (SGD)
With p(ik = i) = 1

n
, the stochastic gradient is an unbiased estimate of the gradient, given by:

E[∇fik (x)] =
n∑

i=1

p(ik = i)∇fi(x) =
n∑

i=1

1
n

∇fi(x) = 1
n

n∑
i=1

∇fi(x) = ∇f(x)

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).
Finite-sum problem v § } 20

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/ε)) O(1/ε)

Convex O(1/ε) O(1/ε2)
Non-Convex O(1/ε) O(1/ε2)

• Stochastic has low iteration cost but slow convergence rate.

• Sublinear rate even in strongly-convex case.
• Bounds are unimprovable under standard assumptions.
• Oracle returns an unbiased gradient approximation with bounded variance.

• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve
constant factors (bottleneck is variance, not condition number).

Finite-sum problem v § } 21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/ε)) O(1/ε)

Convex O(1/ε) O(1/ε2)
Non-Convex O(1/ε) O(1/ε2)

• Stochastic has low iteration cost but slow convergence rate.
• Sublinear rate even in strongly-convex case.

• Bounds are unimprovable under standard assumptions.
• Oracle returns an unbiased gradient approximation with bounded variance.

• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve
constant factors (bottleneck is variance, not condition number).

Finite-sum problem v § } 21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/ε)) O(1/ε)

Convex O(1/ε) O(1/ε2)
Non-Convex O(1/ε) O(1/ε2)

• Stochastic has low iteration cost but slow convergence rate.
• Sublinear rate even in strongly-convex case.
• Bounds are unimprovable under standard assumptions.

• Oracle returns an unbiased gradient approximation with bounded variance.
• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve

constant factors (bottleneck is variance, not condition number).

Finite-sum problem v § } 21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/ε)) O(1/ε)

Convex O(1/ε) O(1/ε2)
Non-Convex O(1/ε) O(1/ε2)

• Stochastic has low iteration cost but slow convergence rate.
• Sublinear rate even in strongly-convex case.
• Bounds are unimprovable under standard assumptions.
• Oracle returns an unbiased gradient approximation with bounded variance.

• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve
constant factors (bottleneck is variance, not condition number).

Finite-sum problem v § } 21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/ε)) O(1/ε)

Convex O(1/ε) O(1/ε2)
Non-Convex O(1/ε) O(1/ε2)

• Stochastic has low iteration cost but slow convergence rate.
• Sublinear rate even in strongly-convex case.
• Bounds are unimprovable under standard assumptions.
• Oracle returns an unbiased gradient approximation with bounded variance.

• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve
constant factors (bottleneck is variance, not condition number).

Finite-sum problem v § } 21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SGD with constant stepsize does not converge

Finite-sum problem v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Main problem of SGD

f(x) = µ

2 ∥x∥2
2 + 1

m

m∑
i=1

log(1 + exp(−yi⟨ai, x⟩)) → min
x∈Rn

0 25 50 75 100
Iteration

10 8

10 6

10 4

10 2

100

|f(
x)

f* |

0 25 50 75 100
Iteration

10 4

10 3

10 2

10 1

100

x k
x

*

0 100000200000300000400000
FLOPS

10 8

10 6

10 4

10 2

100

|f(
x)

f* |

Strongly convex binary logistic regression. m=200, n=10, mu=1.

SGD SGD batch 10 SGD batch 50 SGD batch 100 GD

Finite-sum problem v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Variance reduction methods

Variance reduction methods v § } 24

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y) + E[Y]

• E[Zα] = αE[X] + (1 − α)E[Y]

• var(Zα) = α2 (var(X) + var(Y) − 2cov(X, Y))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?

• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y) + E[Y]

• E[Zα] = αE[X] + (1 − α)E[Y]
• var(Zα) = α2 (var(X) + var(Y) − 2cov(X, Y))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?

• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y) + E[Y]

• E[Zα] = αE[X] + (1 − α)E[Y]
• var(Zα) = α2 (var(X) + var(Y) − 2cov(X, Y))

• If α = 1: no bias

• If α < 1: potential bias (but reduced variance).
• Useful if Y is positively correlated with X.

Application to gradient estimation ?

• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y) + E[Y]

• E[Zα] = αE[X] + (1 − α)E[Y]
• var(Zα) = α2 (var(X) + var(Y) − 2cov(X, Y))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?

• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y) + E[Y]

• E[Zα] = αE[X] + (1 − α)E[Y]
• var(Zα) = α2 (var(X) + var(Y) − 2cov(X, Y))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?

• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y) + E[Y]

• E[Zα] = αE[X] + (1 − α)E[Y]
• var(Zα) = α2 (var(X) + var(Y) − 2cov(X, Y))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?

• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y) + E[Y]

• E[Zα] = αE[X] + (1 − α)E[Y]
• var(Zα) = α2 (var(X) + var(Y) − 2cov(X, Y))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?
• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.

• E[Y] = 1
n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y) + E[Y]

• E[Zα] = αE[X] + (1 − α)E[Y]
• var(Zα) = α2 (var(X) + var(Y) − 2cov(X, Y))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?
• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;

• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:

Zα = α(X − Y) + E[Y]

• E[Zα] = αE[X] + (1 − α)E[Y]
• var(Zα) = α2 (var(X) + var(Y) − 2cov(X, Y))

• If α = 1: no bias
• If α < 1: potential bias (but reduced variance).

• Useful if Y is positively correlated with X.

Application to gradient estimation ?
• SVRG: Let X = ∇fik (x(k−1)) and Y = ∇fik (x̃), with α = 1 and x̃ stored.
• E[Y] = 1

n

∑n

i=1 ∇fi(x̃) full gradient at x̃;
• X − Y = ∇fik (x(k−1)) − ∇fik (x̃)

Variance reduction methods v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
• Maintain table, containing gradient gi of fi, i = 1, . . . , n

• Initialize x(0), and g
(0)
i = ∇fi(x(0)), i = 1, . . . , n

• At steps k = 1, 2, 3, . . ., pick random ik ∈ {1, . . . , n}, then let

g
(k)
ik

= ∇fik (x(k−1)) (most recent gradient of fik)

Set all other g
(k)
i = g

(k−1)
i , i ̸= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − αk
1
n

n∑
i=1

g
(k)
i

• SAG gradient estimates are no longer unbiased, but they have greatly reduced variance
• Isn’t it expensive to average all these gradients? Basically just as efficient as SGD, as long we’re clever:

x(k) = x(k−1) − αk

 1
n

g
(k)
i − 1

n
g

(k−1)
i + 1

n

n∑
i=1

g
(k−1)
i︸ ︷︷ ︸

old table average

︸ ︷︷ ︸

new table average

Variance reduction methods v § } 26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
• Maintain table, containing gradient gi of fi, i = 1, . . . , n
• Initialize x(0), and g

(0)
i = ∇fi(x(0)), i = 1, . . . , n

• At steps k = 1, 2, 3, . . ., pick random ik ∈ {1, . . . , n}, then let

g
(k)
ik

= ∇fik (x(k−1)) (most recent gradient of fik)

Set all other g
(k)
i = g

(k−1)
i , i ̸= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − αk
1
n

n∑
i=1

g
(k)
i

• SAG gradient estimates are no longer unbiased, but they have greatly reduced variance
• Isn’t it expensive to average all these gradients? Basically just as efficient as SGD, as long we’re clever:

x(k) = x(k−1) − αk

 1
n

g
(k)
i − 1

n
g

(k−1)
i + 1

n

n∑
i=1

g
(k−1)
i︸ ︷︷ ︸

old table average

︸ ︷︷ ︸

new table average

Variance reduction methods v § } 26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
• Maintain table, containing gradient gi of fi, i = 1, . . . , n
• Initialize x(0), and g

(0)
i = ∇fi(x(0)), i = 1, . . . , n

• At steps k = 1, 2, 3, . . ., pick random ik ∈ {1, . . . , n}, then let

g
(k)
ik

= ∇fik (x(k−1)) (most recent gradient of fik)

Set all other g
(k)
i = g

(k−1)
i , i ̸= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − αk
1
n

n∑
i=1

g
(k)
i

• SAG gradient estimates are no longer unbiased, but they have greatly reduced variance
• Isn’t it expensive to average all these gradients? Basically just as efficient as SGD, as long we’re clever:

x(k) = x(k−1) − αk

 1
n

g
(k)
i − 1

n
g

(k−1)
i + 1

n

n∑
i=1

g
(k−1)
i︸ ︷︷ ︸

old table average

︸ ︷︷ ︸

new table average

Variance reduction methods v § } 26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
• Maintain table, containing gradient gi of fi, i = 1, . . . , n
• Initialize x(0), and g

(0)
i = ∇fi(x(0)), i = 1, . . . , n

• At steps k = 1, 2, 3, . . ., pick random ik ∈ {1, . . . , n}, then let

g
(k)
ik

= ∇fik (x(k−1)) (most recent gradient of fik)

Set all other g
(k)
i = g

(k−1)
i , i ̸= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − αk
1
n

n∑
i=1

g
(k)
i

• SAG gradient estimates are no longer unbiased, but they have greatly reduced variance
• Isn’t it expensive to average all these gradients? Basically just as efficient as SGD, as long we’re clever:

x(k) = x(k−1) − αk

 1
n

g
(k)
i − 1

n
g

(k−1)
i + 1

n

n∑
i=1

g
(k−1)
i︸ ︷︷ ︸

old table average

︸ ︷︷ ︸

new table average

Variance reduction methods v § } 26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
• Maintain table, containing gradient gi of fi, i = 1, . . . , n
• Initialize x(0), and g

(0)
i = ∇fi(x(0)), i = 1, . . . , n

• At steps k = 1, 2, 3, . . ., pick random ik ∈ {1, . . . , n}, then let

g
(k)
ik

= ∇fik (x(k−1)) (most recent gradient of fik)

Set all other g
(k)
i = g

(k−1)
i , i ̸= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − αk
1
n

n∑
i=1

g
(k)
i

• SAG gradient estimates are no longer unbiased, but they have greatly reduced variance

• Isn’t it expensive to average all these gradients? Basically just as efficient as SGD, as long we’re clever:

x(k) = x(k−1) − αk

 1
n

g
(k)
i − 1

n
g

(k−1)
i + 1

n

n∑
i=1

g
(k−1)
i︸ ︷︷ ︸

old table average

︸ ︷︷ ︸

new table average

Variance reduction methods v § } 26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
• Maintain table, containing gradient gi of fi, i = 1, . . . , n
• Initialize x(0), and g

(0)
i = ∇fi(x(0)), i = 1, . . . , n

• At steps k = 1, 2, 3, . . ., pick random ik ∈ {1, . . . , n}, then let

g
(k)
ik

= ∇fik (x(k−1)) (most recent gradient of fik)

Set all other g
(k)
i = g

(k−1)
i , i ̸= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − αk
1
n

n∑
i=1

g
(k)
i

• SAG gradient estimates are no longer unbiased, but they have greatly reduced variance
• Isn’t it expensive to average all these gradients? Basically just as efficient as SGD, as long we’re clever:

x(k) = x(k−1) − αk

 1
n

g
(k)
i − 1

n
g

(k−1)
i + 1

n

n∑
i=1

g
(k−1)
i︸ ︷︷ ︸

old table average

︸ ︷︷ ︸

new table average

Variance reduction methods v § } 26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

Assume that f(x) = 1
n

∑n

i=1 fi(x), where each fi is differentiable, and ∇fi is Lipschitz with constant L.

Denote x̄(k) = 1
k

∑k−1
l=0 x(l), the average iterate after k − 1 steps.

ñ Theorem

SAG, with a fixed step size α = 1
16L

, and the initialization

g
(0)
i = ∇fi(x(0)) − ∇f(x(0)), i = 1, . . . , n

satisfies
E[f(x̄(k))] − f⋆ ≤ 48n

k
[f(x(0)) − f⋆] + 128L

k
∥x(0) − x⋆∥2

where the expectation is taken over random choices of indices.

Variance reduction methods v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

• Result stated in terms of the average iterate x̄(k), but also can be shown to hold for the best iterate x
(k)
best seen

so far.

• This is O
(

1
k

)
convergence rate for SAG. Compare to O

(
1
k

)
rate for GD, and O

(
1√
k

)
rate for SGD.

• But, the constants are different! Bounds after k steps:

• GD: L∥x(0)−x⋆∥2

2k

• SAG: 48n[f(x(0))−f⋆]+128L∥x(0)−x⋆∥2

k

• So the first term in SAG bound suffers from a factor of n; authors suggest smarter initialization to make
f(x(0)) − f⋆ small (e.g., they suggest using the result of n SGD steps).

Variance reduction methods v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

• Result stated in terms of the average iterate x̄(k), but also can be shown to hold for the best iterate x
(k)
best seen

so far.
• This is O

(
1
k

)
convergence rate for SAG. Compare to O

(
1
k

)
rate for GD, and O

(
1√
k

)
rate for SGD.

• But, the constants are different! Bounds after k steps:

• GD: L∥x(0)−x⋆∥2

2k

• SAG: 48n[f(x(0))−f⋆]+128L∥x(0)−x⋆∥2

k

• So the first term in SAG bound suffers from a factor of n; authors suggest smarter initialization to make
f(x(0)) − f⋆ small (e.g., they suggest using the result of n SGD steps).

Variance reduction methods v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

• Result stated in terms of the average iterate x̄(k), but also can be shown to hold for the best iterate x
(k)
best seen

so far.
• This is O

(
1
k

)
convergence rate for SAG. Compare to O

(
1
k

)
rate for GD, and O

(
1√
k

)
rate for SGD.

• But, the constants are different! Bounds after k steps:

• GD: L∥x(0)−x⋆∥2

2k

• SAG: 48n[f(x(0))−f⋆]+128L∥x(0)−x⋆∥2

k
• So the first term in SAG bound suffers from a factor of n; authors suggest smarter initialization to make

f(x(0)) − f⋆ small (e.g., they suggest using the result of n SGD steps).

Variance reduction methods v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

• Result stated in terms of the average iterate x̄(k), but also can be shown to hold for the best iterate x
(k)
best seen

so far.
• This is O

(
1
k

)
convergence rate for SAG. Compare to O

(
1
k

)
rate for GD, and O

(
1√
k

)
rate for SGD.

• But, the constants are different! Bounds after k steps:
• GD: L∥x(0)−x⋆∥2

2k

• SAG: 48n[f(x(0))−f⋆]+128L∥x(0)−x⋆∥2

k
• So the first term in SAG bound suffers from a factor of n; authors suggest smarter initialization to make

f(x(0)) − f⋆ small (e.g., they suggest using the result of n SGD steps).

Variance reduction methods v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

• Result stated in terms of the average iterate x̄(k), but also can be shown to hold for the best iterate x
(k)
best seen

so far.
• This is O

(
1
k

)
convergence rate for SAG. Compare to O

(
1
k

)
rate for GD, and O

(
1√
k

)
rate for SGD.

• But, the constants are different! Bounds after k steps:
• GD: L∥x(0)−x⋆∥2

2k

• SAG: 48n[f(x(0))−f⋆]+128L∥x(0)−x⋆∥2

k

• So the first term in SAG bound suffers from a factor of n; authors suggest smarter initialization to make
f(x(0)) − f⋆ small (e.g., they suggest using the result of n SGD steps).

Variance reduction methods v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

• Result stated in terms of the average iterate x̄(k), but also can be shown to hold for the best iterate x
(k)
best seen

so far.
• This is O

(
1
k

)
convergence rate for SAG. Compare to O

(
1
k

)
rate for GD, and O

(
1√
k

)
rate for SGD.

• But, the constants are different! Bounds after k steps:
• GD: L∥x(0)−x⋆∥2

2k

• SAG: 48n[f(x(0))−f⋆]+128L∥x(0)−x⋆∥2

k
• So the first term in SAG bound suffers from a factor of n; authors suggest smarter initialization to make

f(x(0)) − f⋆ small (e.g., they suggest using the result of n SGD steps).

Variance reduction methods v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

Assume further that each fi is strongly convex with parameter µ.

ñ Theorem

SAG, with a step size α = 1
16L

and the same initialization as before, satisfies

E[f(x(k))] − f⋆ ≤
(

1 − min
(

µ

16L
,

1
8n

))k (3
2
(
f(x(0)) − f⋆

)
+ 4L

n
∥x(0) − x⋆∥2

)
Notes:

• This is linear convergence rate O(γk) for SAG. Compare this to O(γk) for GD, and only O
(

1
k

)
for SGD.

• Like GD, we say SAG is adaptive to strong convexity.
• Proofs of these results not easy: 15 pages, computed-aided!

Variance reduction methods v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

Assume further that each fi is strongly convex with parameter µ.

ñ Theorem

SAG, with a step size α = 1
16L

and the same initialization as before, satisfies

E[f(x(k))] − f⋆ ≤
(

1 − min
(

µ

16L
,

1
8n

))k (3
2
(
f(x(0)) − f⋆

)
+ 4L

n
∥x(0) − x⋆∥2

)
Notes:

• This is linear convergence rate O(γk) for SAG. Compare this to O(γk) for GD, and only O
(

1
k

)
for SGD.

• Like GD, we say SAG is adaptive to strong convexity.

• Proofs of these results not easy: 15 pages, computed-aided!

Variance reduction methods v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

Assume further that each fi is strongly convex with parameter µ.

ñ Theorem

SAG, with a step size α = 1
16L

and the same initialization as before, satisfies

E[f(x(k))] − f⋆ ≤
(

1 − min
(

µ

16L
,

1
8n

))k (3
2
(
f(x(0)) − f⋆

)
+ 4L

n
∥x(0) − x⋆∥2

)
Notes:

• This is linear convergence rate O(γk) for SAG. Compare this to O(γk) for GD, and only O
(

1
k

)
for SGD.

• Like GD, we say SAG is adaptive to strong convexity.
• Proofs of these results not easy: 15 pages, computed-aided!

Variance reduction methods v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.

• Choose initial L0
• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations

• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for
SGD!)

• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)
instead of O (pn).

fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.

• Choose initial L0
• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations
• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for

SGD!)
• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)

instead of O (pn).
fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.
• Choose initial L0

• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations
• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for

SGD!)
• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)

instead of O (pn).
fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.
• Choose initial L0
• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations
• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for

SGD!)
• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)

instead of O (pn).
fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.
• Choose initial L0
• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations

• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for
SGD!)

• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)
instead of O (pn).

fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.
• Choose initial L0
• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations
• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for

SGD!)

• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)
instead of O (pn).

fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.
• Choose initial L0
• Increase L, until the following satisfies

fik
(xk+1) ≤ fik

(xk) + ∇fik
(xk)(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

2

• Decrease L between iterations
• Since stochastic gradient g(xk) → ∇f(xk) you can use its norm to track convergence (which is not true for

SGD!)
• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)

instead of O (pn).
fi(w) = φ(wT xi) ↔ ∇fi(w) = φ′(wT xi)xi

Variance reduction methods v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG non-uniform sampling
• The step size αk and the convergence rate of the method are determined by the constant L for f(x), where

L = max1≤i≤n Li, Li is the Lipschitz constant for the function fi

• When selecting components with a probability proportional to Li, the constant L can be reduced from maxi Li

to L̄ =
∑

i
Li/N :

g(x) = 1
n

n∑
i=1

fi(x)

= 1
n

n∑
i=1

Li∑
j=1

fi(x)
Li

= 1∑
k

Lk

n∑
i=1

Li∑
j=1

(∑
k

Lk

n

fi(x)
Li

)

With this approach, the component with a larger value of Li is selected more often.
• To ensure convergence, component selection should be carried out according to the rule: with probability 0.5,

select from a uniform distribution, with probability 0.5, select with probabilities Li/
∑

j
Lj .

• To generate with probabilities Li/
∑

j
Lj , there is an algorithm with complexity O(log N).

Variance reduction methods v § } 31

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG non-uniform sampling
• The step size αk and the convergence rate of the method are determined by the constant L for f(x), where

L = max1≤i≤n Li, Li is the Lipschitz constant for the function fi

• When selecting components with a probability proportional to Li, the constant L can be reduced from maxi Li

to L̄ =
∑

i
Li/N :

g(x) = 1
n

n∑
i=1

fi(x)

= 1
n

n∑
i=1

Li∑
j=1

fi(x)
Li

= 1∑
k

Lk

n∑
i=1

Li∑
j=1

(∑
k

Lk

n

fi(x)
Li

)

With this approach, the component with a larger value of Li is selected more often.

• To ensure convergence, component selection should be carried out according to the rule: with probability 0.5,
select from a uniform distribution, with probability 0.5, select with probabilities Li/

∑
j

Lj .

• To generate with probabilities Li/
∑

j
Lj , there is an algorithm with complexity O(log N).

Variance reduction methods v § } 31

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG non-uniform sampling
• The step size αk and the convergence rate of the method are determined by the constant L for f(x), where

L = max1≤i≤n Li, Li is the Lipschitz constant for the function fi

• When selecting components with a probability proportional to Li, the constant L can be reduced from maxi Li

to L̄ =
∑

i
Li/N :

g(x) = 1
n

n∑
i=1

fi(x)

= 1
n

n∑
i=1

Li∑
j=1

fi(x)
Li

= 1∑
k

Lk

n∑
i=1

Li∑
j=1

(∑
k

Lk

n

fi(x)
Li

)

With this approach, the component with a larger value of Li is selected more often.
• To ensure convergence, component selection should be carried out according to the rule: with probability 0.5,

select from a uniform distribution, with probability 0.5, select with probabilities Li/
∑

j
Lj .

• To generate with probabilities Li/
∑

j
Lj , there is an algorithm with complexity O(log N).

Variance reduction methods v § } 31

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG non-uniform sampling
• The step size αk and the convergence rate of the method are determined by the constant L for f(x), where

L = max1≤i≤n Li, Li is the Lipschitz constant for the function fi

• When selecting components with a probability proportional to Li, the constant L can be reduced from maxi Li

to L̄ =
∑

i
Li/N :

g(x) = 1
n

n∑
i=1

fi(x)

= 1
n

n∑
i=1

Li∑
j=1

fi(x)
Li

= 1∑
k

Lk

n∑
i=1

Li∑
j=1

(∑
k

Lk

n

fi(x)
Li

)

With this approach, the component with a larger value of Li is selected more often.
• To ensure convergence, component selection should be carried out according to the rule: with probability 0.5,

select from a uniform distribution, with probability 0.5, select with probabilities Li/
∑

j
Lj .

• To generate with probabilities Li/
∑

j
Lj , there is an algorithm with complexity O(log N).

Variance reduction methods v § } 31

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

• Initialize: x̃ ∈ Rd

• For iepoch = 1 to # of epochs

• Compute all gradients ∇fi(x̃); store ∇f(x̃) = 1
n

∑n

i=1 ∇fi(x̃)
• Initialize x0 = x̃
• For t = 1 to length of epochs (m)

• xt = xt−1 − α
[

∇f(x̃) +
(

∇fit (xt−1) − ∇fit (x̃)
)]

• Update x̃ = xt

Notes:

• Two gradient evaluations per inner step.
• Two parameters: length of epochs + step-size γ.
• Linear convergence rate, simple proof.

Variance reduction methods v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

• Initialize: x̃ ∈ Rd

• For iepoch = 1 to # of epochs

• Compute all gradients ∇fi(x̃); store ∇f(x̃) = 1
n

∑n

i=1 ∇fi(x̃)
• Initialize x0 = x̃
• For t = 1 to length of epochs (m)

• xt = xt−1 − α
[

∇f(x̃) +
(

∇fit (xt−1) − ∇fit (x̃)
)]

• Update x̃ = xt

Notes:

• Two gradient evaluations per inner step.
• Two parameters: length of epochs + step-size γ.
• Linear convergence rate, simple proof.

Variance reduction methods v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

• Initialize: x̃ ∈ Rd

• For iepoch = 1 to # of epochs
• Compute all gradients ∇fi(x̃); store ∇f(x̃) = 1

n

∑n

i=1 ∇fi(x̃)

• Initialize x0 = x̃
• For t = 1 to length of epochs (m)

• xt = xt−1 − α
[

∇f(x̃) +
(

∇fit (xt−1) − ∇fit (x̃)
)]

• Update x̃ = xt

Notes:

• Two gradient evaluations per inner step.
• Two parameters: length of epochs + step-size γ.
• Linear convergence rate, simple proof.

Variance reduction methods v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

• Initialize: x̃ ∈ Rd

• For iepoch = 1 to # of epochs
• Compute all gradients ∇fi(x̃); store ∇f(x̃) = 1

n

∑n

i=1 ∇fi(x̃)
• Initialize x0 = x̃

• For t = 1 to length of epochs (m)

• xt = xt−1 − α
[

∇f(x̃) +
(

∇fit (xt−1) − ∇fit (x̃)
)]

• Update x̃ = xt

Notes:

• Two gradient evaluations per inner step.
• Two parameters: length of epochs + step-size γ.
• Linear convergence rate, simple proof.

Variance reduction methods v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

• Initialize: x̃ ∈ Rd

• For iepoch = 1 to # of epochs
• Compute all gradients ∇fi(x̃); store ∇f(x̃) = 1

n

∑n

i=1 ∇fi(x̃)
• Initialize x0 = x̃
• For t = 1 to length of epochs (m)

• xt = xt−1 − α
[

∇f(x̃) +
(

∇fit (xt−1) − ∇fit (x̃)
)]

• Update x̃ = xt

Notes:

• Two gradient evaluations per inner step.
• Two parameters: length of epochs + step-size γ.
• Linear convergence rate, simple proof.

Variance reduction methods v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

• Initialize: x̃ ∈ Rd

• For iepoch = 1 to # of epochs
• Compute all gradients ∇fi(x̃); store ∇f(x̃) = 1

n

∑n

i=1 ∇fi(x̃)
• Initialize x0 = x̃
• For t = 1 to length of epochs (m)

• xt = xt−1 − α
[

∇f(x̃) +
(

∇fit (xt−1) − ∇fit (x̃)
)]

• Update x̃ = xt

Notes:

• Two gradient evaluations per inner step.
• Two parameters: length of epochs + step-size γ.
• Linear convergence rate, simple proof.

Variance reduction methods v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

• Initialize: x̃ ∈ Rd

• For iepoch = 1 to # of epochs
• Compute all gradients ∇fi(x̃); store ∇f(x̃) = 1

n

∑n

i=1 ∇fi(x̃)
• Initialize x0 = x̃
• For t = 1 to length of epochs (m)

• xt = xt−1 − α
[

∇f(x̃) +
(

∇fit (xt−1) − ∇fit (x̃)
)]

• Update x̃ = xt

Notes:

• Two gradient evaluations per inner step.
• Two parameters: length of epochs + step-size γ.
• Linear convergence rate, simple proof.

Variance reduction methods v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

• Initialize: x̃ ∈ Rd

• For iepoch = 1 to # of epochs
• Compute all gradients ∇fi(x̃); store ∇f(x̃) = 1

n

∑n

i=1 ∇fi(x̃)
• Initialize x0 = x̃
• For t = 1 to length of epochs (m)

• xt = xt−1 − α
[

∇f(x̃) +
(

∇fit (xt−1) − ∇fit (x̃)
)]

• Update x̃ = xt

Notes:

• Two gradient evaluations per inner step.
• Two parameters: length of epochs + step-size γ.
• Linear convergence rate, simple proof.

Variance reduction methods v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

• Initialize: x̃ ∈ Rd

• For iepoch = 1 to # of epochs
• Compute all gradients ∇fi(x̃); store ∇f(x̃) = 1

n

∑n

i=1 ∇fi(x̃)
• Initialize x0 = x̃
• For t = 1 to length of epochs (m)

• xt = xt−1 − α
[

∇f(x̃) +
(

∇fit (xt−1) − ∇fit (x̃)
)]

• Update x̃ = xt

Notes:
• Two gradient evaluations per inner step.

• Two parameters: length of epochs + step-size γ.
• Linear convergence rate, simple proof.

Variance reduction methods v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

• Initialize: x̃ ∈ Rd

• For iepoch = 1 to # of epochs
• Compute all gradients ∇fi(x̃); store ∇f(x̃) = 1

n

∑n

i=1 ∇fi(x̃)
• Initialize x0 = x̃
• For t = 1 to length of epochs (m)

• xt = xt−1 − α
[

∇f(x̃) +
(

∇fit (xt−1) − ∇fit (x̃)
)]

• Update x̃ = xt

Notes:
• Two gradient evaluations per inner step.
• Two parameters: length of epochs + step-size γ.

• Linear convergence rate, simple proof.

Variance reduction methods v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

• Initialize: x̃ ∈ Rd

• For iepoch = 1 to # of epochs
• Compute all gradients ∇fi(x̃); store ∇f(x̃) = 1

n

∑n

i=1 ∇fi(x̃)
• Initialize x0 = x̃
• For t = 1 to length of epochs (m)

• xt = xt−1 − α
[

∇f(x̃) +
(

∇fit (xt−1) − ∇fit (x̃)
)]

• Update x̃ = xt

Notes:
• Two gradient evaluations per inner step.
• Two parameters: length of epochs + step-size γ.
• Linear convergence rate, simple proof.

Variance reduction methods v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adaptivity or scaling

Adaptivity or scaling v § } 33

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let g(k) = ∇fik (x(k−1)), and update for j = 1, . . . , p:

v
(k)
j = vk−1

j + (g(k)
j)2

x
(k)
j = x

(k−1)
j − α

g
(k)
j√

v
(k)
j + ϵ

Notes:
• AdaGrad does not require tuning the learning rate: α > 0 is a fixed constant, and the learning rate decreases

naturally over iterations.

• The learning rate of rare informative features diminishes slowly.
• Can drastically improve over SGD in sparse problems.
• Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad,

etc. improve on this, popular in training deep neural networks.
• The constant ϵ is typically set to 10−6 to ensure that we do not suffer from division by zero or overly large step

sizes.

Adaptivity or scaling v § } 34

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let g(k) = ∇fik (x(k−1)), and update for j = 1, . . . , p:

v
(k)
j = vk−1

j + (g(k)
j)2

x
(k)
j = x

(k−1)
j − α

g
(k)
j√

v
(k)
j + ϵ

Notes:
• AdaGrad does not require tuning the learning rate: α > 0 is a fixed constant, and the learning rate decreases

naturally over iterations.
• The learning rate of rare informative features diminishes slowly.

• Can drastically improve over SGD in sparse problems.
• Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad,

etc. improve on this, popular in training deep neural networks.
• The constant ϵ is typically set to 10−6 to ensure that we do not suffer from division by zero or overly large step

sizes.

Adaptivity or scaling v § } 34

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let g(k) = ∇fik (x(k−1)), and update for j = 1, . . . , p:

v
(k)
j = vk−1

j + (g(k)
j)2

x
(k)
j = x

(k−1)
j − α

g
(k)
j√

v
(k)
j + ϵ

Notes:
• AdaGrad does not require tuning the learning rate: α > 0 is a fixed constant, and the learning rate decreases

naturally over iterations.
• The learning rate of rare informative features diminishes slowly.
• Can drastically improve over SGD in sparse problems.

• Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad,
etc. improve on this, popular in training deep neural networks.

• The constant ϵ is typically set to 10−6 to ensure that we do not suffer from division by zero or overly large step
sizes.

Adaptivity or scaling v § } 34

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let g(k) = ∇fik (x(k−1)), and update for j = 1, . . . , p:

v
(k)
j = vk−1

j + (g(k)
j)2

x
(k)
j = x

(k−1)
j − α

g
(k)
j√

v
(k)
j + ϵ

Notes:
• AdaGrad does not require tuning the learning rate: α > 0 is a fixed constant, and the learning rate decreases

naturally over iterations.
• The learning rate of rare informative features diminishes slowly.
• Can drastically improve over SGD in sparse problems.
• Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad,

etc. improve on this, popular in training deep neural networks.

• The constant ϵ is typically set to 10−6 to ensure that we do not suffer from division by zero or overly large step
sizes.

Adaptivity or scaling v § } 34

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let g(k) = ∇fik (x(k−1)), and update for j = 1, . . . , p:

v
(k)
j = vk−1

j + (g(k)
j)2

x
(k)
j = x

(k−1)
j − α

g
(k)
j√

v
(k)
j + ϵ

Notes:
• AdaGrad does not require tuning the learning rate: α > 0 is a fixed constant, and the learning rate decreases

naturally over iterations.
• The learning rate of rare informative features diminishes slowly.
• Can drastically improve over SGD in sparse problems.
• Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad,

etc. improve on this, popular in training deep neural networks.
• The constant ϵ is typically set to 10−6 to ensure that we do not suffer from division by zero or overly large step

sizes.

Adaptivity or scaling v § } 34

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

RMSProp (Tieleman and Hinton, 2012)

An enhancement of AdaGrad that addresses its aggressive, monotonically decreasing learning rate. Uses a moving
average of squared gradients to adjust the learning rate for each weight. Let g(k) = ∇fik (x(k−1)) and update rule
for j = 1, . . . , p:

v
(k)
j = γv

(k−1)
j + (1 − γ)(g(k)

j)2

x
(k)
j = x

(k−1)
j − α

g
(k)
j√

v
(k)
j + ϵ

Notes:
• RMSProp divides the learning rate for a weight by a running average of the magnitudes of recent gradients for

that weight.

• Allows for a more nuanced adjustment of learning rates than AdaGrad, making it suitable for non-stationary
problems.

• Commonly used in training neural networks, particularly in recurrent neural networks.

Adaptivity or scaling v § } 35

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

RMSProp (Tieleman and Hinton, 2012)

An enhancement of AdaGrad that addresses its aggressive, monotonically decreasing learning rate. Uses a moving
average of squared gradients to adjust the learning rate for each weight. Let g(k) = ∇fik (x(k−1)) and update rule
for j = 1, . . . , p:

v
(k)
j = γv

(k−1)
j + (1 − γ)(g(k)

j)2

x
(k)
j = x

(k−1)
j − α

g
(k)
j√

v
(k)
j + ϵ

Notes:
• RMSProp divides the learning rate for a weight by a running average of the magnitudes of recent gradients for

that weight.
• Allows for a more nuanced adjustment of learning rates than AdaGrad, making it suitable for non-stationary

problems.

• Commonly used in training neural networks, particularly in recurrent neural networks.

Adaptivity or scaling v § } 35

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

RMSProp (Tieleman and Hinton, 2012)

An enhancement of AdaGrad that addresses its aggressive, monotonically decreasing learning rate. Uses a moving
average of squared gradients to adjust the learning rate for each weight. Let g(k) = ∇fik (x(k−1)) and update rule
for j = 1, . . . , p:

v
(k)
j = γv

(k−1)
j + (1 − γ)(g(k)

j)2

x
(k)
j = x

(k−1)
j − α

g
(k)
j√

v
(k)
j + ϵ

Notes:
• RMSProp divides the learning rate for a weight by a running average of the magnitudes of recent gradients for

that weight.
• Allows for a more nuanced adjustment of learning rates than AdaGrad, making it suitable for non-stationary

problems.
• Commonly used in training neural networks, particularly in recurrent neural networks.

Adaptivity or scaling v § } 35

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adadelta (Zeiler, 2012)
An extension of RMSProp that seeks to reduce its dependence on a manually set global learning rate. Instead of
accumulating all past squared gradients, Adadelta limits the window of accumulated past gradients to some fixed
size w. Update mechanism does not require learning rate α:

v
(k)
j = γv

(k−1)
j + (1 − γ)(g(k)

j)2

g̃
(k)
j =

√
∆x

(k−1)
j + ϵ√

v
(k)
j + ϵ

g
(k)
j

x
(k)
j = x

(k−1)
j − g̃

(k)
j

∆x
(k)
j = ρ∆x

(k−1)
j + (1 − ρ)(g̃(k)

j)2

Notes:
• Adadelta adapts learning rates based on a moving window of gradient updates, rather than accumulating all

past gradients. This way, learning rates adjusted are more robust to changes in model’s dynamics.

• The method does not require an initial learning rate setting, making it easier to configure.
• Often used in deep learning where parameter scales differ significantly across layers.

Adaptivity or scaling v § } 36

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adadelta (Zeiler, 2012)
An extension of RMSProp that seeks to reduce its dependence on a manually set global learning rate. Instead of
accumulating all past squared gradients, Adadelta limits the window of accumulated past gradients to some fixed
size w. Update mechanism does not require learning rate α:

v
(k)
j = γv

(k−1)
j + (1 − γ)(g(k)

j)2

g̃
(k)
j =

√
∆x

(k−1)
j + ϵ√

v
(k)
j + ϵ

g
(k)
j

x
(k)
j = x

(k−1)
j − g̃

(k)
j

∆x
(k)
j = ρ∆x

(k−1)
j + (1 − ρ)(g̃(k)

j)2

Notes:
• Adadelta adapts learning rates based on a moving window of gradient updates, rather than accumulating all

past gradients. This way, learning rates adjusted are more robust to changes in model’s dynamics.
• The method does not require an initial learning rate setting, making it easier to configure.

• Often used in deep learning where parameter scales differ significantly across layers.

Adaptivity or scaling v § } 36

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adadelta (Zeiler, 2012)
An extension of RMSProp that seeks to reduce its dependence on a manually set global learning rate. Instead of
accumulating all past squared gradients, Adadelta limits the window of accumulated past gradients to some fixed
size w. Update mechanism does not require learning rate α:

v
(k)
j = γv

(k−1)
j + (1 − γ)(g(k)

j)2

g̃
(k)
j =

√
∆x

(k−1)
j + ϵ√

v
(k)
j + ϵ

g
(k)
j

x
(k)
j = x

(k−1)
j − g̃

(k)
j

∆x
(k)
j = ρ∆x

(k−1)
j + (1 − ρ)(g̃(k)

j)2

Notes:
• Adadelta adapts learning rates based on a moving window of gradient updates, rather than accumulating all

past gradients. This way, learning rates adjusted are more robust to changes in model’s dynamics.
• The method does not require an initial learning rate setting, making it easier to configure.
• Often used in deep learning where parameter scales differ significantly across layers.

Adaptivity or scaling v § } 36

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adam (Kingma and Ba, 2014)
Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past
gradients and squared gradients. Update rule:

m
(k)
j = β1m

(k−1)
j + (1 − β1)g(k)

j

v
(k)
j = β2v

(k−1)
j + (1 − β2)(g(k)

j)2

m̂j =
m

(k)
j

1 − βk
1

, v̂j =
v

(k)
j

1 − βk
2

x
(k)
j = x

(k−1)
j − α

m̂j√
v̂j + ϵ

Notes:
• Adam is suitable for large datasets and high-dimensional optimization problems.

• It corrects the bias towards zero in the initial moments seen in other methods like RMSProp, making the
estimates more accurate.

• Highly popular in training deep learning models, owing to its efficiency and straightforward implementation.
• However, the proposed algorithm in initial version does not converge even in convex setting (later fixes

appeared)

Adaptivity or scaling v § } 37

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adam (Kingma and Ba, 2014)
Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past
gradients and squared gradients. Update rule:

m
(k)
j = β1m

(k−1)
j + (1 − β1)g(k)

j

v
(k)
j = β2v

(k−1)
j + (1 − β2)(g(k)

j)2

m̂j =
m

(k)
j

1 − βk
1

, v̂j =
v

(k)
j

1 − βk
2

x
(k)
j = x

(k−1)
j − α

m̂j√
v̂j + ϵ

Notes:
• Adam is suitable for large datasets and high-dimensional optimization problems.
• It corrects the bias towards zero in the initial moments seen in other methods like RMSProp, making the

estimates more accurate.

• Highly popular in training deep learning models, owing to its efficiency and straightforward implementation.
• However, the proposed algorithm in initial version does not converge even in convex setting (later fixes

appeared)

Adaptivity or scaling v § } 37

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adam (Kingma and Ba, 2014)
Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past
gradients and squared gradients. Update rule:

m
(k)
j = β1m

(k−1)
j + (1 − β1)g(k)

j

v
(k)
j = β2v

(k−1)
j + (1 − β2)(g(k)

j)2

m̂j =
m

(k)
j

1 − βk
1

, v̂j =
v

(k)
j

1 − βk
2

x
(k)
j = x

(k−1)
j − α

m̂j√
v̂j + ϵ

Notes:
• Adam is suitable for large datasets and high-dimensional optimization problems.
• It corrects the bias towards zero in the initial moments seen in other methods like RMSProp, making the

estimates more accurate.
• Highly popular in training deep learning models, owing to its efficiency and straightforward implementation.

• However, the proposed algorithm in initial version does not converge even in convex setting (later fixes
appeared)

Adaptivity or scaling v § } 37

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adam (Kingma and Ba, 2014)
Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past
gradients and squared gradients. Update rule:

m
(k)
j = β1m

(k−1)
j + (1 − β1)g(k)

j

v
(k)
j = β2v

(k−1)
j + (1 − β2)(g(k)

j)2

m̂j =
m

(k)
j

1 − βk
1

, v̂j =
v

(k)
j

1 − βk
2

x
(k)
j = x

(k−1)
j − α

m̂j√
v̂j + ϵ

Notes:
• Adam is suitable for large datasets and high-dimensional optimization problems.
• It corrects the bias towards zero in the initial moments seen in other methods like RMSProp, making the

estimates more accurate.
• Highly popular in training deep learning models, owing to its efficiency and straightforward implementation.
• However, the proposed algorithm in initial version does not converge even in convex setting (later fixes

appeared)
Adaptivity or scaling v § } 37

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

General introduction

General introduction v § } 38

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Optimization for Neural Network training

Neural network is a function, that takes an input x and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear
transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

N N (w, x) = σL ◦ wL ◦ . . . ◦ σ1 ◦ w1 ◦ x w = (W1, b1, . . . WL, bL) ,

where L is the number of layers, σi - non-linear activation function, wi = Wix + bi - linear layer.

Typically, we aim to find w in order to solve some problem (let say to be N N (w, xi) ∼ yi for some training data
xi, yi). In order to do it, we solve the optimization problem:

L(w, X, y) → min
w

1
N

N∑
i=1

l(w, xi, yi) → min
w

General introduction v § } 39

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Optimization for Neural Network training

Neural network is a function, that takes an input x and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear
transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

N N (w, x) = σL ◦ wL ◦ . . . ◦ σ1 ◦ w1 ◦ x w = (W1, b1, . . . WL, bL) ,

where L is the number of layers, σi - non-linear activation function, wi = Wix + bi - linear layer.

Typically, we aim to find w in order to solve some problem (let say to be N N (w, xi) ∼ yi for some training data
xi, yi). In order to do it, we solve the optimization problem:

L(w, X, y) → min
w

1
N

N∑
i=1

l(w, xi, yi) → min
w

General introduction v § } 39

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Optimization for Neural Network training

Neural network is a function, that takes an input x and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear
transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

N N (w, x) = σL ◦ wL ◦ . . . ◦ σ1 ◦ w1 ◦ x w = (W1, b1, . . . WL, bL) ,

where L is the number of layers, σi - non-linear activation function, wi = Wix + bi - linear layer.

Typically, we aim to find w in order to solve some problem (let say to be N N (w, xi) ∼ yi for some training data
xi, yi). In order to do it, we solve the optimization problem:

L(w, X, y) → min
w

1
N

N∑
i=1

l(w, xi, yi) → min
w

General introduction v § } 39

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Optimization for Neural Network training

Neural network is a function, that takes an input x and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear
transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

N N (w, x) = σL ◦ wL ◦ . . . ◦ σ1 ◦ w1 ◦ x w = (W1, b1, . . . WL, bL) ,

where L is the number of layers, σi - non-linear activation function, wi = Wix + bi - linear layer.

Typically, we aim to find w in order to solve some problem (let say to be N N (w, xi) ∼ yi for some training data
xi, yi). In order to do it, we solve the optimization problem:

L(w, X, y) → min
w

1
N

N∑
i=1

l(w, xi, yi) → min
w

General introduction v § } 39

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Optimization for Neural Network training

Neural network is a function, that takes an input x and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear
transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

N N (w, x) = σL ◦ wL ◦ . . . ◦ σ1 ◦ w1 ◦ x w = (W1, b1, . . . WL, bL) ,

where L is the number of layers, σi - non-linear activation function, wi = Wix + bi - linear layer.

Typically, we aim to find w in order to solve some problem (let say to be N N (w, xi) ∼ yi for some training data
xi, yi). In order to do it, we solve the optimization problem:

L(w, X, y) → min
w

1
N

N∑
i=1

l(w, xi, yi) → min
w

General introduction v § } 39

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Loss functions
In the context of training neural networks, the loss function, denoted by l(w, xi, yi), measures the discrepancy
between the predicted output N N (w, xi) and the true output yi. The choice of the loss function can significantly
influence the training process. Common loss functions include:

Mean Squared Error (MSE)
Used primarily for regression tasks. It computes the square of the difference between predicted and true values,
averaged over all samples.

MSE(w, X, y) = 1
N

N∑
i=1

(N N (w, xi) − yi)2

Cross-Entropy Loss
Typically used for classification tasks. It measures the dissimilarity between the true label distribution and the
predictions, providing a probabilistic interpretation of classification.

Cross-Entropy(w, X, y) = − 1
N

N∑
i=1

C∑
c=1

yi,c log(N N (w, xi)c)

where yi,c is a binary indicator (0 or 1) if class label c is the correct classification for observation i, and C is the
number of classes.

General introduction v § } 40

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Simple example: Fashion MNIST classification problem

0 100 200 300 400 500 600
Iteration

100

101

102

Cr
os

s-
en

tro
py

Train Loss
SGD
Adam
SGD Momentum
SGD Nesterov

0 100 200 300 400 500 600
Iteration

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Train Accuracy

SGD
Adam
SGD Momentum
SGD Nesterov

0 2 4 6
Time (s)

100

101

102

Cr
os

s-
en

tro
py

Test loss
SGD
Adam
SGD Momentum
SGD Nesterov

0 2 4 6 8 10
Epoch

100

101

102

Cr
os

s-
en

tro
py

Test Loss
SGD
Adam
SGD Momentum
SGD Nesterov

0 2 4 6 8 10
Epoch

0.2

0.4

0.6

0.8
Ac

cu
ra

cy
Test Accuracy

SGD
Adam
SGD Momentum
SGD Nesterov

0 2 4 6
Time (s)

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Test Accuracy

SGD
Adam
SGD Momentum
SGD Nesterov

Training a Neural Network on Fashion MNIST.
79510 trainable parameters.

Figure 3: 3Open in colabGeneral introduction v § } 41

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/NN_optimization.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Loss surface of Neural Networks

Loss surface of Neural Networks v § } 42

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Visualizing loss surface of neural network via line projection

We denote the initial point as w0, representing the weights of the neural network at initialization. The weights after
training are denoted as ŵ.

Initially, we generate a random Gaussian direction w1 ∈ Rp, which inherits the magnitude of the original neural
network weights for each parameter group. Subsequently, we sample the training and testing loss surfaces at points
along the direction w1, situated close to either w0 or ŵ.

Mathematically, this involves evaluating:

L(α) = L(w0 + αw1), where α ∈ [−b, b].

Here, α plays the role of a coordinate along the w1 direction, and b stands for the bounds of interpolation.
Visualizing L(α) enables us to project the p-dimensional surface onto a one-dimensional axis.

It is important to note that the characteristics of the resulting graph heavily rely on the chosen projection direction.
It’s not feasible to maintain the entirety of the information when transforming a space with 100,000 dimensions into
a one-dimensional line through projection. However, certain properties can still be established. For instance, if
L(α) |α=0 is decreasing, this indicates that the point lies on a slope. Additionally, if the projection is non-convex, it
implies that the original surface was not convex.

Loss surface of Neural Networks v § } 43

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Visualizing loss surface of neural network

Figure 4: 3Open in colab
Loss surface of Neural Networks v § } 44

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/NN_Surface_Visualization.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Visualizing loss surface of neural network

Figure 5: 3Open in colab
Loss surface of Neural Networks v § } 44

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/NN_Surface_Visualization.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Plane projection
We can explore this idea further and draw the projection of the loss surface to the plane, which is defined by 2
random vectors. Note, that with 2 random gaussian vectors in the huge dimensional space are almost certainly
orthogonal. So, as previously, we generate random normalized gaussian vectors w1, w2 ∈ Rp and evaluate the loss
function

L(α, β) = L(w0 + αw1 + βw2), where α, β ∈ [−b, b]2.

Figure 6: 3Open in colabLoss surface of Neural Networks v § } 45

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/NN_Surface_Visualization.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Can plane projections be useful? 1

Figure 7: The loss surface of ResNet-56
without skip connections Figure 8: The loss surface of ResNet-56 with skip connections

1Visualizing the Loss Landscape of Neural Nets, Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, Tom Goldstein
Loss surface of Neural Networks v § } 46

https://arxiv.org/abs/1712.09913
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Can plane projections be useful, really? 2

Figure 9: Examples of a loss landscape of a typical CNN model on FashionMNIST and CIFAR10 datasets found with MPO.
Loss values are color-coded according to a logarithmic scale

2Loss Landscape Sightseeing with Multi-Point Optimization, Ivan Skorokhodov, Mikhail Burtsev
Loss surface of Neural Networks v § } 47

https://arxiv.org/abs/1910.03867
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Impact of initialization 3

� Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a “good”
solution hard, requires careful tuning.

• Don’t initialize all weights to be the same — why?

• Random: Initialize randomly, e.g., via the Gaussian N(0, σ2), where std σ depends on the number of neurons in
a given layer. Symmetry breaking.

• One can find more useful advices here

3On the importance of initialization and momentum in deep learning Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton

Loss surface of Neural Networks v § } 48

https://cs231n.github.io/neural-networks-2/
https://proceedings.mlr.press/v28/sutskever13.html
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Impact of initialization 3

� Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a “good”
solution hard, requires careful tuning.

• Don’t initialize all weights to be the same — why?
• Random: Initialize randomly, e.g., via the Gaussian N(0, σ2), where std σ depends on the number of neurons in

a given layer. Symmetry breaking.

• One can find more useful advices here

3On the importance of initialization and momentum in deep learning Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton

Loss surface of Neural Networks v § } 48

https://cs231n.github.io/neural-networks-2/
https://proceedings.mlr.press/v28/sutskever13.html
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Impact of initialization 3

� Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a “good”
solution hard, requires careful tuning.

• Don’t initialize all weights to be the same — why?
• Random: Initialize randomly, e.g., via the Gaussian N(0, σ2), where std σ depends on the number of neurons in

a given layer. Symmetry breaking.
• One can find more useful advices here

3On the importance of initialization and momentum in deep learning Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton
Loss surface of Neural Networks v § } 48

https://cs231n.github.io/neural-networks-2/
https://proceedings.mlr.press/v28/sutskever13.html
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Impact of initialization 4

0 0.5 1 1.5 2 2.5 3
0.75

0.8

0.85

0.9

0.95

1

Epoch

E
rr

or

ours

Xavier

Figure 10: 22-layer ReLU net: good init converges faster

0 1 2 3 4 5 6 7 8 9

0.75

0.8

0.85

0.9

0.95

Epoch

E
rr

or

ours

Xavier

Figure 11: 30-layer ReLU net: good init is able to converge

4Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, Kaiming He, Xiangyu Zhang, Shaoqing Ren,
Jian Sun

Loss surface of Neural Networks v § } 49

https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Grokking 5

Figure 12: Training transformer with 2 layers, width 128, and 4 attention heads, with a total of about 4 · 105 non-embedding
parameters. Reproduction of experiments (~ half an hour) is available here

5Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets, Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin,
Vedant Misra

Loss surface of Neural Networks v § } 50

https://colab.research.google.com/drive/1r3Wg84XECq57fT2B1dvHLSJrJ2sjIDCJ?usp=sharing
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Double Descent 6
R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

6Reconciling modern machine learning practice and the bias-variance trade-off, Mikhail Belkin, Daniel Hsu, Siyuan Ma, Soumik Mandal
Loss surface of Neural Networks v § } 51

https://arxiv.org/abs/1812.11118
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Exponential learning rate

• Exponential Learning Rate Schedules for Deep Learning

Loss surface of Neural Networks v § } 52

http://www.offconvex.org/2020/04/24/ExpLR1/
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Modern problems

Modern problems v § } 53

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Wide vs narrow local minima

5 0 5 10 15 20 25 30
w

0.1

0.2

0.3

0.4

0.5

Lo
ss

Modern problems v § } 54

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Wide vs narrow local minima

5 0 5 10 15 20 25 30
w

0.1

0.2

0.3

0.4

0.5

Lo
ss Test

Train

Modern problems v § } 54

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Wide vs narrow local minima

5 0 5 10 15 20 25 30
w

0.1

0.2

0.3

0.4

0.5

Lo
ss Test

Train

Modern problems v § } 54

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochasticity allows to escape local minima

Modern problems v § } 55

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Local divergence can also be benefitial

Modern problems v § } 56

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Automatic Differentiation stories

Automatic Differentiation stories v § } 57

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient Vanishing/Exploding

• Multiplication of a chain of matrices in backprop

• If several of these matrices are “small” (i.e., norms < 1), when we multiply them, the gradient will decrease
exponentially fast and tend to vanish (hurting learning in lower layers much more)

• Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients
are unstable.

• Coping with unstable gradients poses several challenges, and must be dealt with to achieve good results.

Automatic Differentiation stories v § } 58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient Vanishing/Exploding

• Multiplication of a chain of matrices in backprop
• If several of these matrices are “small” (i.e., norms < 1), when we multiply them, the gradient will decrease

exponentially fast and tend to vanish (hurting learning in lower layers much more)

• Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients
are unstable.

• Coping with unstable gradients poses several challenges, and must be dealt with to achieve good results.

Automatic Differentiation stories v § } 58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient Vanishing/Exploding

• Multiplication of a chain of matrices in backprop
• If several of these matrices are “small” (i.e., norms < 1), when we multiply them, the gradient will decrease

exponentially fast and tend to vanish (hurting learning in lower layers much more)
• Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients

are unstable.

• Coping with unstable gradients poses several challenges, and must be dealt with to achieve good results.

Automatic Differentiation stories v § } 58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient Vanishing/Exploding

• Multiplication of a chain of matrices in backprop
• If several of these matrices are “small” (i.e., norms < 1), when we multiply them, the gradient will decrease

exponentially fast and tend to vanish (hurting learning in lower layers much more)
• Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients

are unstable.
• Coping with unstable gradients poses several challenges, and must be dealt with to achieve good results.

Automatic Differentiation stories v § } 58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture

Forward pass

Backward pass

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f . The gradient of the loss with respect to the activations and parameters marked with b.

, Important

The results obtained for the f nodes are needed to compute the b nodes.

Automatic Differentiation stories v § } 59

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture

Forward pass

Backward pass

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f . The gradient of the loss with respect to the activations and parameters marked with b.

, Important

The results obtained for the f nodes are needed to compute the b nodes.

Automatic Differentiation stories v § } 59

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Automatic Differentiation stories v § } 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Automatic Differentiation stories v § } 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Automatic Differentiation stories v § } 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Automatic Differentiation stories v § } 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Automatic Differentiation stories v § } 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Automatic Differentiation stories v § } 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Automatic Differentiation stories v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Automatic Differentiation stories v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Automatic Differentiation stories v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Automatic Differentiation stories v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Automatic Differentiation stories v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Automatic Differentiation stories v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 16: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Automatic Differentiation stories v § } 62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 16: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Automatic Differentiation stories v § } 62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 16: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Automatic Differentiation stories v § } 62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 16: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Automatic Differentiation stories v § } 62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 16: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Automatic Differentiation stories v § } 62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 16: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Automatic Differentiation stories v § } 62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient checkpointing visualization

The animated visualization of the above approaches §

An example of using a gradient checkpointing §

Automatic Differentiation stories v § } 63

https://github.com/cybertronai/gradient-checkpointing
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Large batch training

Large batch training v § } 64

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Large batch training

256 512 1k 2k 4k 8k 11k

mini-batch size

0.2

0.22

0.24

0.26

0.28

0.3

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 (

s
e

c
s
)

0.5

1

2

4

8

16

ti
m

e
 p

e
r

e
p

o
c
h

 (
m

in
s
)

Large batch training v § } 65

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Large batch training

64 128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

20

25

30

35

40
Im

a
g

e
N

e
t

to
p

-1
 v

a
lid

a
ti
o

n
 e

rr
o

r

Large batch training v § } 66

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

	Convergence rate reminder
	Finite-sum problem
	Stochastic Gradient Descent (SGD)
	Mini-batch SGD
	Finite-sum problem
	Variance reduction methods
	Adaptivity or scaling
	General introduction
	Loss surface of Neural Networks
	Modern problems
	Automatic Differentiation stories
	Large batch training

