Stochastic Gradient Descent. Finite-sum
problems. Advanced stochastic methods.
Adaptivity and variance reduction. Stories
from modern Machine Learning from the

optimization perspective

Daniil Merkulov

Applied Math for Data Science. Sberuniversity.

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence rate reminder

— min .
‘f Tz Convergence rate reminder

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence rate

100 .
10—2 .
10—4 .
10—6 .

10—8 .

Error rate upper bound

10—10]

—— Sublinear, a = -7
—— Superlinear, q = 0.9
—— Linear, g =0.5

—— Quadratic, g = 0.9

10—12

— min .
‘f Tz Convergence rate reminder

10 20 30 40 50
Number of iteration, k

Figure 1: Difference between the convergence speed

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem

‘f - wl} Finite-sum problem

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min f(x) —mln—Zfl x)

T ERP z€RP N

The gradient descent acts like follows:

Thi1 = T — %ZVfi(x) (GD)
=1

® Convergence with constant « or line search.

lf%ﬁ}‘i Finite-sum problem 0 O

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min = min — Z
zERP f(z) TERP N fi@

The gradient descent acts like follows:

Tht1 = T — % Z V fi(x) (GD)
i=1

® Convergence with constant « or line search.
® |teration cost is linear in n. For ImageNet n ~ 1.4 - 107, for WikiText n ~ 108,

lf%ﬁ}‘i Finite-sum problem 0 O

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min = min — Z
zERP f(z) TERP N fi@

The gradient descent acts like follows:

Tht1 = T — % Z V fi(x) (GD)
i=1

® Convergence with constant « or line search.
® |teration cost is linear in n. For ImageNet n ~ 1.4 - 107, for WikiText n ~ 108,

lf%ﬁ}‘i Finite-sum problem 0 O

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min = min — Z
zERP @ TE€RP N filw
The gradient descent acts like follows:
n
Qg
Tht1 = Tk =~ Z Vfi(z)
i=1

® Convergence with constant « or line search.
® |teration cost is linear in n. For ImageNet n ~ 1.4 - 107, for WikiText n ~ 108,

(GD)

Let's/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose i index of point

at each iteration uniformly:
Tht1 = Tk — oV fiy, (Th)
With p(ix, = 1) = % the stochastic gradient is an unbiased estimate of the gradient, given by:
n

B[V, ()] = > plis =) VA() = 3 2 Vfila sz = Vf(x)

i=1 i=1

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(z).

— mi -
‘f EHA}‘; Finite-sum problem

(SGD)

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/¢)) O(1/e)
Convex O(1/¢) 0(1/€?)
Non-Convex O(1/¢) 0(1/€?)

® Stochastic has low iteration cost but slow convergence rate.

‘f - EHA}‘; Finite-sum problem Q0

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/¢)) O(1/e)
Convex O(1/¢) 0(1/€?)
Non-Convex O(1/¢) 0(1/€?)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.

‘f - EHA}‘; Finite-sum problem Q0

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/¢)) O(1/e)
Convex O(1/¢) 0(1/€?)
Non-Convex O(1/¢) 0(1/€?)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
® Bounds are unimprovable under standard assumptions.

‘f - EHA}‘; Finite-sum problem Q0

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/¢)) O(1/e)
Convex O(1/¢) 0(1/€?)
Non-Convex O(1/¢) 0(1/€?)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
® Bounds are unimprovable under standard assumptions.
® Oracle returns an unbiased gradient approximation with bounded variance.

‘f - EHA}‘; Finite-sum problem Q0

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/¢)) O(1/e)
Convex O(1/¢) 0(1/€?)
Non-Convex O(1/¢) 0(1/€?)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
® Bounds are unimprovable under standard assumptions.
® Oracle returns an unbiased gradient approximation with bounded variance.

® Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve
constant factors (bottleneck is variance, not condition number).

‘f - 5“;‘; Finite-sum problem Q0

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Gradient Descent (SGD)

‘f - wl} Stochastic Gradient Descent (SGD)

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Typical behaviour

‘f — min
Tz

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent. Batch = 2
Loss value 0.03 60 w; 3.01, w; 3.84
7 X
Optimum
5.5 4
6 -
5.0 4
5 B
4.5 4
$ 44 > 4.0
3.5
34
3.0 4
2 .
2.5
1 : . : : ; 2.0
0 1 2 3 4 5 6
wy

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence
Lipschitz continiity implies:

Flonnn) € FGon) + (VS @) anes — o) + gl — ol

‘f - ;nylr; Stochastic Gradient Descent (SGD)

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence
Lipschitz continiity implies:

Flonnn) € FGon) + (VS @) anes — o) + gl — ol

using (SGD):
Flarsn) < flon) — oV 7). Vfiy (o0) + a2 519 ()|

‘f - Pay"; Stochastic Gradient Descent (SGD)

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence
Lipschitz continiity implies:

Flonnn) € FGon) + (VS @) anes — o) + gl — ol

using (SGD):
Jn) < (on) = an(9 £ @), ¥ fi (00)) + a2 5 IV o ()|

Now let's take expectation with respect to iy:

E[f (zrt+1)] < E[f () — an(V (), V iy, (z1)) + Oti%HVfik (z)]%]

‘f - 511;1; Stochastic Gradient Descent (SGD)

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence
Lipschitz continiity implies:

Flonnn) € FGon) + (VS @) anes — o) + gl — ol

using (SGD):
F@ren) < floe) — an(VF(@n), V fip (an)) + a5 I\szk(ka)ﬂ

Now let's take expectation with respect to iy:
E[f(zx+1)] < E[f(zx) — an(V f(ax), Vi, (21)) + ok 5 HVfuc (z0)]1”]
Using linearity of expectation:

E[f(@ri1)] < fzr) — an(Vf (@), B[V fir (z1)]) +04k* IV fir (20)”]

‘f - 511;1; Stochastic Gradient Descent (SGD)

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence
Lipschitz continiity implies:

Flonnn) € FGon) + (VS @) anes — o) + gl — ol

using (SGD):
F@ren) < floe) — an(VF(@n), V fip (an)) + a5 I\szk(ka)ﬂ

Now let's take expectation with respect to iy:

E[f(r41)] < E[f(21) — an(Vf(2r), V fi, (1)) + a5 HVfuc (z0)]1”]
Using linearity of expectation:
Elf(zr1)] < f(@x) — an(Vf(zk), E[V fi, (zx)]) + ak* E[IV fir (zx)|]
Since uniform sampling implies unbiased estimate of gradient: E[V f;, (xk)} — Vf(zx):
Elf(zrs1)] < f(ar) — anl|V f(@e)|* + ok [||Vfuc ()]

‘f - 511;1; Stochastic Gradient Descent (SGD)

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

SIVF@IE > w(f (@)~), Yz € R?

‘f - ;nyul Stochastic Gradient Descent (SGD)

(PL)

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

SIVF@)E > u(f() — 1), Vo € R (PL)

This inequality simply requires that the gradient grows faster than a quadratic function as we move away from the
optimal function value. Note, that strong convexity implies PL, but not vice versa. Using PL we can write:

E[f(rasa)] — £ < (U 200) [f (@) —]+ 0d SBIIV fiy (o)]

‘f - 511;1; Stochastic Gradient Descent (SGD) 0 O 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

SIVF@)E > u(f() — 1), Vo € R (PL)

This inequality simply requires that the gradient grows faster than a quadratic function as we move away from the
optimal function value. Note, that strong convexity implies PL, but not vice versa. Using PL we can write:

Ef ()] — /7 < (1= 20l f (@) — £ + a2 SEIIV S, (1))

This bound already indicates, that we have something like linear convergence if far from solution and gradients are
similar, but no progress if close to solution or have high variance in gradients at the same time.

‘f - 5“.}‘; Stochastic Gradient Descent (SGD) 0 O 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

SIVF@)E > u(f() — 1), Vo € R (PL)

This inequality simply requires that the gradient grows faster than a quadratic function as we move away from the
optimal function value. Note, that strong convexity implies PL, but not vice versa. Using PL we can write:

Ef ()] — /7 < (1= 20l f (@) — £ + a2 SEIIV S, (1))

This bound already indicates, that we have something like linear convergence if far from solution and gradients are
similar, but no progress if close to solution or have high variance in gradients at the same time.

Now we assume, that the variance of the stochastic gradients is bounded:

B[V fi(zx)]*] < 0°

‘f - 5“.}‘; Stochastic Gradient Descent (SGD) 0 O 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

SIVF@)E > u(f() — 1), Vo € R (PL)

This inequality simply requires that the gradient grows faster than a quadratic function as we move away from the
optimal function value. Note, that strong convexity implies PL, but not vice versa. Using PL we can write:

Ef ()] — /7 < (1= 20l f (@) — £ + a2 SEIIV S, (1))

This bound already indicates, that we have something like linear convergence if far from solution and gradients are
similar, but no progress if close to solution or have high variance in gradients at the same time.

Now we assume, that the variance of the stochastic gradients is bounded:

B[V fi(zx)]*] < 0°

Thus, we have
Lo?a?
2

Elf (zr41) — 7] < (1= 2ap)[f(zr) — f7] +

‘f - 5“.}‘; Stochastic Gradient Descent (SGD) 0 O

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

1. Consider decreasing stepsize strategy with oy =

Elf(zi1) —] <

‘f - ;nylr; Stochastic Gradient Descent (SGD)

2k
2u(k+1)2

(k+1)

+1__ we obtain

5 [f (k) = 7]+

Lo*(2k + 1)?

8u?(k + 1)4

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

+1

1. Consider decreasing stepsize strategy with oy = %Q(IIZW we obtain

E[f(@re1) = f7] < 5 [f (k) = 7]+

(k+1) 8u2(k + 1)

2. Multiplying both sides by (k 4 1)? and letting 6 (k) = k*E[f(xr) — f*] we get

Lo?(2k + 1)?
8u2(k +1)2
Lo?

< =9
< oy(k) + 22

Sp(k+1) <dp(k)+

‘f - fny"; Stochastic Gradient Descent (SGD)

'S Lo*(2k + 1)?

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

+1

1. Consider decreasing stepsize strategy with oy = %Q(IIZW we obtain

E[f(@re1) = f7] < 5 [f (k) = 7]+

(k+1) 8u2(k + 1)

2. Multiplying both sides by (k 4 1)? and letting 6 (k) = k*E[f(xr) — f*] we get

Lo?(2k + 1)?
8u2(k +1)2
Lo?

< =9
< oy(k) + 22

Sp(k+1) <dp(k)+

‘f - fny"; Stochastic Gradient Descent (SGD)

'S Lo*(2k + 1)?

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

+1

1. Consider decreasing stepsize strategy with oy = %Q(IIEW we obtain

'S v Lo?(2k 4+ 1)?]
sf(@e) = f]+m

E[f(zrs1) — 7] < Hrip

2. Multiplying both sides by (k 4 1)? and letting 6 (k) = k*E[f(xr) — f*] we get

Lo?(2k + 1)?
8u2(k +1)2
Lo?

< =9
< oy(k) + 22

Sp(k+1) <dp(k)+

2k+1
k+1

where the second line follows from
d7(0) = 0 we get

< 2. Summing up this inequality from & = 0 to k& and using the fact that

Lo*(k+1)
212

k 2
sk +1) <00+ 22 S 1< 2R ED 2R () — 1) <

which gives the stated rate.

‘f - 5“.}‘; Stochastic Gradient Descent (SGD) 0 O 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence. Smooth PL case.

3. Constant step size: Choosing a, = « for any a < 1/2u yields

k

E[f(ras1) — 7] < (U= 20 F(awo) — 1]+ 220 31— 20

k LU2062 > i
< (1= 20p)"[f(w0) = 7]+ =75 Y (1 — 2ap)’
=0
Lo’a

= (1= 200)"[f(wo) — f1+ =

)

where the last line uses that a < 1/2p and the limit of the geometric series.

‘f - fny"; Stochastic Gradient Descent (SGD)

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

‘f — min
Tz

Mini-batch SGD

Mini-batch SGD

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Mini-batch SGD

Approach 1: Control the sample size
The deterministic method uses all n gradients:

1 n
= > Vi)
i=1
The stochastic method approximates this using just 1 sample:
V fir(xk) vaz T)

A common variant is to use a larger sample By, (“mini-batch"):

|B | > Viilaw) ~72Vf1 (zx)

i€ By,

particularly useful for vectorization and parallelization.

For example, with 16 cores set |Bi| = 16 and compute 16 gradients at once.

B Somin e atch SGD

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Mini-Batching as Gradient Descent with Error

The SG method with a sample By (“mini-batch”) uses iterations:

Tk4+1 = Tk — Ok <|Blkl Z Vfl(a?k)> .

i€By,

Let's view this as a “gradient method with error”:

ZTie+1 = xk — ar(Vf(zk) + ex),
where ey, is the difference between the approximate and true gradient.
If you use ay, = % then using the descent lemma, this algorithm has:

1

Flann) < F@n) = 5V + 5zl

for any error eg.

B Somin e atch SGD

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Effect of Error on Convergence Rate

Our progress bound with ay = % and error in the gradient of ey is:

1

Fana) < F@) = 5= IVF @I + 5 el

Connection between “error-free” rate and “with error” rate:
® If the “error-free” rate is O(%), you maintain this rate if |[ex||* = O(%).

B Somin e atch SGD

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Effect of Error on Convergence Rate

Our progress bound with ay = % and error in the gradient of ey is:

1

Fana) < F@) = 5= IVF @I + 5 el

Connection between “error-free” rate and “with error” rate:
® If the “error-free” rate is O(%), you maintain this rate if |[ex||* = O(%).
® If the “error-free” rate is O(p*), you maintain this rate if |lex||* = O(p").

B Somin e atch SGD

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Effect of Error on Convergence Rate

Our progress bound with ay = % and error in the gradient of ey is:

1

Fana) < F@) = 5= IVF @I + 5 el

Connection between “error-free” rate and “with error” rate:
® If the “error-free” rate is O(%), you maintain this rate if |[ex||* = O(%).
® If the “error-free” rate is O(p*), you maintain this rate if |lex||* = O(p").

B Somin e atch SGD

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Effect of Error on Convergence Rate

Our progress bound with ay = % and error in the gradient of ey is:

Flaesn) < flow) = 5z IV F@Ol + 5 el

Connection between “error-free” rate and “with error” rate:

® If the “error-free” rate is O(%), you maintain this rate if |[ex||* = O(%).

® If the “error-free” rate is O(p*), you maintain this rate if |lex||* = O(p").

If the error goes to zero more slowly, then the rate at which it goes to zero becomes the bottleneck.

So, to understand the effect of batch size, we need to know how | By| affects |lex]|?.

B Somin e atch SGD

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Main problem of SGD

F@) = Blellg + - 3" log(1 + exp(~yi(ai, 2))) > min

TERM
i=1

Strongly convex binary logistic regression. m=200, n=10, mu=1.

100 1 100 4 100 1
10724 101 10724
T 0 4 *>< 'T 0 4
—~ 107% ~ | -2] 10744
> L 1072 = 1
= = =
1075 - 1073 4 1076
1078 4 10-4 4 1078 4
0 25 50 75 100 0 25 50 75 100 0 100000200000300000400000
Iteration Iteration FLOPS
—— SGD —— SGD batch10 —— SGD batch 50 = —— SGD batch 100 —— GD

B Somin e atch SGD PR

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Conclusions

® SGD with fixed learning rate does not converge even for PL (strongly convex) case

B Somin e atch SGD

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Conclusions

® SGD with fixed learning rate does not converge even for PL (strongly convex) case
® SGD achieves sublinear convergence with rate O (%) for PL-case.

B Somin e atch SGD

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Conclusions

® SGD with fixed learning rate does not converge even for PL (strongly convex) case
® SGD achieves sublinear convergence with rate O (%) for PL-case.
® Nesterov/Polyak accelerations do not improve convergence rate

B Somin e atch SGD

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Conclusions

SGD with fixed learning rate does not converge even for PL (strongly convex) case
SGD achieves sublinear convergence with rate O (%) for PL-case.
Nesterov/Polyak accelerations do not improve convergence rate

Two-phase Newton-like method achieves O (%) without strong convexity.

B Somin e atch SGD

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

‘f — min
Tz

Finite-sum problem

Finite-sum problem

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min = min —
xERP f(zERP N Z fl

The gradient descent acts like follows:

Ny
Tpt1 = Tk nZ;sz(x)

® |teration cost is linear in n.

— mi -
‘f W;rﬁ Finite-sum problem

(GD)

o 20

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min f(z) = min —Zfl

T ERP z€RP N

The gradient descent acts like follows:

L WN“g
Tht1 = Tk . Z;Vfl(x)

® |[teration cost is linear in n.
® Convergence with constant « or line search.

— mi -
‘f §“}‘§ Finite-sum problem

(GD)

o 20

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min f(z) = min —Zfl

T ERP z€RP N

The gradient descent acts like follows:

L WN“g
Tht1 = Tk . Z;Vfl(x)

® |[teration cost is linear in n.
® Convergence with constant « or line search.

— mi -
‘f §“}‘§ Finite-sum problem

(GD)

o 20

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

mGi{% f(- zE]eri}’ 5 Z fl
The gradient descent acts like follows:
(673
=T — — g Vi GD
Tht+1 = Tk " ~ Ji(z) (GD)

® |[teration cost is linear in n.
® Convergence with constant « or line search.

Let's/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose i index of point
at each iteration uniformly:
Tht1 = T — ok V iy, (Tk) (SGD)
With p(ix, = 1) = % the stochastic gradient is an unbiased estimate of the gradient, given by:
E[V fii ()] = Y plix =)V fi(z) = Z Vfi(z Z Vfi(z) = V()
i=1 i=1
This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(z).
‘fﬁ}fnﬂ Finite-sum problem 0 O 20

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/¢)) O(1/e)
Convex O(1/¢) 0(1/€?)
Non-Convex O(1/¢) 0(1/€?)

® Stochastic has low iteration cost but slow convergence rate.

‘f - EHA}‘; Finite-sum problem Q0O

21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/¢)) O(1/e)
Convex O(1/¢) 0(1/€?)
Non-Convex O(1/¢) 0(1/€?)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.

‘f - EHA}‘; Finite-sum problem Q0O

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/¢)) O(1/e)
Convex O(1/¢) 0(1/€?)
Non-Convex O(1/¢) 0(1/€?)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
® Bounds are unimprovable under standard assumptions.

‘f - EHA}‘; Finite-sum problem Q0O

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/¢)) O(1/e)
Convex O(1/¢) 0(1/€?)
Non-Convex O(1/¢) 0(1/€?)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
® Bounds are unimprovable under standard assumptions.
® Oracle returns an unbiased gradient approximation with bounded variance.

‘f - EHA}‘; Finite-sum problem Q0O

21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/¢)) O(1/e)
Convex O(1/¢) 0(1/€?)
Non-Convex O(1/¢) 0(1/€?)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
® Bounds are unimprovable under standard assumptions.
® Oracle returns an unbiased gradient approximation with bounded variance.

® Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve
constant factors (bottleneck is variance, not condition number).

‘f - 5“;‘; Finite-sum problem Q0O

21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SGD with constant stepsize does not converge

RS

.z

Stochastic Gradient Descent. Batch = 2

Loss value 0.03

w;y 3.01, w; 3.84

7 6.0
Optimum
5.5 1
6 -
5.0 A
5 .
4.5 A
£ a4 > 4.0
3.5 1
3 -
3.0 1
2 -
2.5 A
1 T T T T T 2.0
0 1 2 3 4 5 6

nite-sum problem

(9]

22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Main problem of SGD

f@) = Bilell3 + D log(1-+ expl—i{os 1)) ~ min

Strongly convex binary logistic regression. m=200, n=10, mu=1.

100 1 100 4 100 1
10724 10-1 10724
T 0 4 *>< 'T 0 4
—~ 107% ~ | -2] 10744
> L 1072 = 1
= = =
1075 - 1073 4 1076
1078 4 10-4 4 1078 4
0 25 50 75 100 0 25 50 75 100 0 100000200000300000400000
Iteration Iteration FLOPS
—— SGD —— SGD batch10 —— SGD batch 50 = —— SGD batch 100 —— GD

‘f - ;nyu; Finite-sum problem 00

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

‘f — min
Tz

Variance reduction methods

Variance reduction methods

24

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:
Zo =a(X -Y)+E[Y]

* E[Zs] = aE[X] + (1 — @)E[Y]

‘f - W;rﬁ Variance reduction methods 0 O

25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:
Zo =a(X -Y)+E[Y]

° E[Z,] = aIE[X] + (1 - a)E[Y]
® var(Z,) = o (var(X) + var(Y) — 2cov(X,Y))

‘f - W;rﬁ Variance reduction methods 0 O

25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:
Zo =a(X -Y)+E[Y]

[Za] = aIE[X] + (1 - a)E[Y]
° var() = (vag(X) +var(Y) — 2cov(X,Y))
® |f « = 1: no bias

‘f - W;rﬁ Variance reduction methods 0 O

25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:
Zo =a(X -Y)+E[Y]

® E[Z.] = aE[X] + (1 — a)E[Y]

® var(Z,) = o (var(X) + var(Y) — 2cov(X,Y))
® |f a = 1: no bias
® If a < 1: potential bias (but reduced variance).

‘f - ﬁ}‘i Variance reduction methods 0 O

25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:
Zo =a(X -Y)+E[Y]

® E[Z.] = aE[X] + (1 — a)E[Y]
® var(Z,) = o (var(X) + var(Y) — 2cov(X,Y))
® |f a = 1: no bias
® If a < 1: potential bias (but reduced variance).
® Useful if Y is positively correlated with X.

‘f - ﬁ}‘i Variance reduction methods 0 O

25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:
Zo =a(X -Y)+E[Y]

® E[Z.] = aE[X] + (1 — a)E[Y]
® var(Z,) = o (var(X) + var(Y) — 2cov(X,Y))
® |f a = 1: no bias
® If a < 1: potential bias (but reduced variance).
® Useful if Y is positively correlated with X.

‘f - ﬁ}‘i Variance reduction methods 0 O

25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:
Zo =a(X -Y)+E[Y]

® E[Z.] = aE[X] + (1 — a)E[Y]
® var(Z,) = o (var(X) + var(Y) — 2cov(X,Y))
® |f a = 1: no bias
® If a < 1: potential bias (but reduced variance).
® Useful if Y is positively correlated with X.

Application to gradient estimation ?

® SVRG: Let X = Vf;, (z*"Y) and Y = Vi, (), with @ = 1 and Z stored.

‘f - 5“.}‘; Variance reduction methods D0 O

25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:
Zo =a(X -Y)+E[Y]

® E[Z.] = aE[X] + (1 — a)E[Y]
® var(Z,) = o (var(X) + var(Y) — 2cov(X,Y))
® |f a = 1: no bias
® If a < 1: potential bias (but reduced variance).
® Useful if Y is positively correlated with X.

Application to gradient estimation ?

® SVRG: Let X = Vf;, (z*"Y) and Y = Vi, (), with @ = 1 and Z stored.
* E[Y]=23" V/fi(Z) full gradient at Z;

‘f - 5“.}‘; Variance reduction methods D0 O

25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:
Zo =a(X -Y)+E[Y]

® E[Z.] = aE[X] + (1 — a)E[Y]
® var(Z,) = o (var(X) + var(Y) — 2cov(X,Y))
® |f a = 1: no bias
® If a < 1: potential bias (but reduced variance).
® Useful if Y is positively correlated with X.

Application to gradient estimation ?

® SVRG: Let X = Vf;, (z*"Y) and Y = Vi, (), with @ = 1 and Z stored.
* E[Y]=23" V/fi(Z) full gradient at Z;
° XY =Vfi(a" V) - Vi (&)

‘f - 5“.}‘; Variance reduction methods D0 O

25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)

® Maintain table, containing gradient g; of fi, i=1,...,n

— mi . -
‘f ;nyul Variance reduction methods

26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
® Maintain table, containing gradient g; of fi, i=1,...,n
* Initialize (¥, and ggo) =V), i=1,...,n

— mi . .
‘f ?qyu} Variance reduction methods

26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
® Maintain table, containing gradient g; of fi, i=1,...,n
* Initialize (¥, and ggo) =Vfi@),i=1,...,n
® At steps k=1,2,3,..., pick random iy € {1,...,n}, then let
g;’:) = Vi, (*7) (most recent gradient of f;,)

Set all other ggk) = gEk_l), i # ik, i.e., these stay the same

— mi . .
‘f ;nylr; Variance reduction methods

26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
® Maintain table, containing gradient g; of fi, i=1,...,n
* Initialize (¥, and ggo) =Vfi@),i=1,...,n
® At steps k=1,2,3,..., pick random iy € {1,...,n}, then let
gz(:) V fio (7)) (most recent gradient of f;,)

Set all other gg = gfk R # i, i.e., these stay the same

® Update
20 = =) Zg(m

— mi . .
‘f ;nylr; Variance reduction methods

26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
® Maintain table, containing gradient g; of fi, i=1,...,n
* Initialize (¥, and ggo) =Vfi@),i=1,...,n
® At steps k=1,2,3,..., pick random iy € {1,...,n}, then let

gz(:) V fio (7)) (most recent gradient of f;,)

Set all other gg = gfk R # i, i.e., these stay the same

® Update
20 = =) Zg(m

® SAG gradient estimates are no longer unbiased, but they have greatly reduced variance

— mi . .
‘f Pay"; Variance reduction methods

26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
® Maintain table, containing gradient g; of fi, i=1,...,n
® Initialize (9, and gm) Vi ®),i=1,...,n
® At steps k=1,2,3,..., pick random iy € {1,...,n}, then let

gz(:) V fio (7)) (most recent gradient of f;,)

Set all other gz(= gfk R # i, i.e., these stay the same

® Update
MONRCENS Zg(m

SAG gradient estimates are no longer unbiased, but they have greatly reduced variance

7 K3

n
(k) _ (k1) _ Iw_ 1 -1 1 (k-1)
T x Qg ng ng + " E g;

=1

old table average

new table average

‘f - ﬁ}‘i Variance reduction methods D0

Isn't it expensive to average all these gradients? Basically just as efficient as SGD, as long we're clever:

26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

Assume that f(z) = + ZZ 1 fi(x), where each f; is differentiable, and V f; is Lipschitz with constant L.
Denote ®) = 1 Zk 20, the average iterate after k — 1 steps.
i Theorem

SAG, with a fixed step size a = and the initialization

16L’
g0 =V i) - Vi), i=1,....n

satisfies 18 1981
Elf @) - 1" < 2 @) = 14 =20 - o)

where the expectation is taken over random choices of indices.

‘f - 5“.}‘; Variance reduction methods D0

27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

® Result stated in terms of the average iterate ™, but also can be shown to hold for the best iterate z
so far.

— mi . .
‘f §ny1r; Variance reduction methods v d

(k)
best SEEN

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

® Result stated in terms of the average iterate ™, but also can be shown to hold for the best iterate z
so far.

(k)
bost SEEN

® Thisis O (%) convergence rate for SAG. Compare to O (%) rate for GD, and O (ﬁ) rate for SGD.

— mi . .
‘f 5“.}‘; Variance reduction methods v d

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

(k)
best SEEN

® Result stated in terms of the average iterate ™, but also can be shown to hold for the best iterate z

so far.
® Thisis O (%) convergence rate for SAG. Compare to O (%) rate for GD, and O (ﬁ) rate for SGD.

® But, the constants are different! Bounds after k steps:

— mi . .
‘f 5“.}‘; Variance reduction methods

28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

(k)
best SEEN

® Result stated in terms of the average iterate ™, but also can be shown to hold for the best iterate z

so far.
® Thisis O (%) convergence rate for SAG. Compare to O (%) rate for GD, and O (ﬁ) rate for SGD.

® But, the constants are different! Bounds after k steps:

I*H2

(0) _
o GD: Lz —a"II” T

— mi . .
‘f 5“.}‘; Variance reduction methods

28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

(k)
best SEEN

® Result stated in terms of the average iterate ™, but also can be shown to hold for the best iterate z

so far.
® Thisis O (%) convergence rate for SAG. Compare to O (%) rate for GD, and O (ﬁ) rate for SGD.

® But, the constants are different! Bounds after k steps:
o gp: Llz@—=x|?
. 2 (0) (0) 2
. 48n[f (@)~ F*]+128L |2 —a*||
* SAG: -

— mi . .
‘f 5“.}‘; Variance reduction methods

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

Result stated in terms of the average iterate ™, but also can be shown to hold for the best iterate z
so far.

® But, the constants are different! Bounds after k steps:
. Lle@ —a*?
® GD: 2k

e SAG: 48n[f<z(0))7f*]~|];128LHz(0)—z*||2

So the first term in SAG bound suffers from a factor of n; authors suggest smarter initialization to m
(@) — f* small (e.g., they suggest using the result of n SGD steps).

— mi . .
‘f 5“.}‘; Variance reduction methods v d

(k)
best SEEN

Thisis O (%) convergence rate for SAG. Compare to O (%) rate for GD, and O (ﬁ) rate for SGD.

ake

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

Assume further that each f; is strongly convex with parameter .

i Theorem

1

SAG, with a step size o = 157 and the same initialization as before, satisfies

16
k
OV _ % < (1~ mi Li))(% N ﬁm)_*z)
B ™) - £ < (1-min (32 5-)) (5 (06D = 1) + 221 o)
Notes:
® This is linear convergence rate O(+") for SAG. Compare this to O(y*) for GD, and only O (%) for SGD.

‘f - 5“.}‘; Variance reduction methods D0

29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

Assume further that each f; is strongly convex with parameter p.

i Theorem

1

SAG, with a step size o = 157 and the same initialization as before, satisfies

16
< (1 mi Li))k@ ©y _) 4 AL <o>_*2)
B ™) - £ < (1-min (32 5-)) (5 (06D = 1) + 221 o)
Notes:
® This is linear convergence rate O(+") for SAG. Compare this to O(y*) for GD, and only O (%) for SGD.

® Like GD, we say SAG is adaptive to strong convexity.

‘f - 5“.}‘; Variance reduction methods D0

29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence

Assume further that each f; is strongly convex with parameter p.

i Theorem

1

SAG, with a step size o = 157 and the same initialization as before, satisfies

16
< (1 mi Li))k@ ©y _) 4 AL <o>_*2)
B ™) - £ < (1-min (35 5-)) (5 06 = £) + 201 =7
Notes:
® This is linear convergence rate O(+") for SAG. Compare this to O(y*) for GD, and only O (%) for SGD.

® Like GD, we say SAG is adaptive to strong convexity.
® Proofs of these results not easy: 15 pages, computed-aided!

‘f - 5“.}‘; Variance reduction methods QO

29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

‘f - 511;1; Variance reduction methods 0 O 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.
® |n practice you can use backtracking strategy to estimate Lipschitz constant.

‘f - 511;1; Variance reduction methods 0 O 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

® |n practice you can use backtracking strategy to estimate Lipschitz constant.
® Choose initial Lg

‘f - 511;1; Variance reduction methods 0 O 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

® |n practice you can use backtracking strategy to estimate Lipschitz constant.
® Choose initial Lg
® Increase L, until the following satisfies

L
Fir (@™F1) < iy (@) + V iy (aF) (@ —a®) + 5||xk+1 - "3

‘f - 511;1; Variance reduction methods 0 O 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

® |n practice you can use backtracking strategy to estimate Lipschitz constant.
® Choose initial Lg
® Increase L, until the following satisfies

L
Fire @) < fiy (&%) + Vi (29) (@ — %) + 5||xk+1 -3
® Decrease L between iterations

‘f - 511;1; Variance reduction methods 0 O 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.
® |n practice you can use backtracking strategy to estimate Lipschitz constant.

® Choose initial Lg
® Increase L, until the following satisfies

L
Fir (@™F1) < iy (@) + V iy (aF) (@ —a®) + 5||xk+1 - "3

® Decrease L between iterations
® Since stochastic gradient g(z"®) — Vf(z*) you can use its norm to track convergence (which is not true for

SGD!)

‘f - 5“.}‘; Variance reduction methods 0 O 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

® |n practice you can use backtracking strategy to estimate Lipschitz constant.
® Choose initial Lg
® Increase L, until the following satisfies

Fun @) € i (05) Vi (R = a) 4 ka3
® Decrease L between iterations
® Since stochastic gradient g(z"®) — Vf(z*) you can use its norm to track convergence (which is not true for
SGD!)
® For the generalized linear models (this includes LogReg, LLS) you need to store much less memory O (n)
instead of O (pn).
filw) = p(w'zi) & Vfi(w) = ¢/ (w' zi)zi

‘f - 5“.}‘; Variance reduction methods D0 O 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG non-uniform sampling

® The step size a and the convergence rate of the method are determined by the constant L for f(x), where
L = maxi<i<n Ls, L; is the Lipschitz constant for the function f;

‘f - §ny1r; Variance reduction methods 0 O

31

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG non-uniform sampling

® The step size a and the convergence rate of the method are determined by the constant L for f(x), where

L = maxi<i<n Ls, L; is the Lipschitz constant for the function f;

® When selecting components with a probability proportional to L;, the constant L can be reduced from max; L;

toL=Y . Li/N:

With this approach, the component with a larger value of L; is selected more often.

— mi . .
‘f 5“.}‘; Variance reduction methods

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG non-uniform sampling
® The step size a and the convergence rate of the method are determined by the constant L for f(x), where
L = maxi<i<n Ls, L; is the Lipschitz constant for the function f;

® When selecting components with a probability proportional to L;, the constant L can be reduced from max; L;

toL=Y . Li/N:
o) = =3 fila)
i=1
n L;
1 fi(z)
_E;; L;
n L
_ 1 Ly fi(z)

With this approach, the component with a larger value of L; is selected more often.

® To ensure convergence, component selection should be carried out according to the rule: with probability 0.5,
select from a uniform distribution, with probability 0.5, select with probabilities L;/ Zj Lj.

— min . .
‘f Tz Variance reduction methods

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

SAG non-uniform sampling

® The step size a and the convergence rate of the method are determined by the constant L for f(x), where
L = maxi<i<n Ls, L; is the Lipschitz constant for the function f;

® When selecting components with a probability proportional to L;, the constant L can be reduced from max; L;
to L=73 . Li/N:

g@) =+ fila)

nz:l
1§~y)
P
n L;
_ 1 L fi(2)

With this approach, the component with a larger value of L; is selected more often.

® To ensure convergence, component selection should be carried out according to the rule: with probability 0.5,
select from a uniform distribution, with probability 0.5, select with probabilities L;/ Zj Lj.

® To generate with probabilities L;/ Z]. L;, there is an algorithm with complexity O(log N).

‘f - 5“.}‘; Variance reduction methods 0 O 31

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

e Initialize: 7 € R?

— mi . -
‘f wl} Variance reduction methods

32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

e [nitialize: Z € R?¢
® For icpoch =1 to # of epochs

— mi . .
‘f ?qyu} Variance reduction methods

32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

* Initialize: 7 € R?
® For icpoch =1 to # of epochs
® Compute all gradients V f;(Z); store V(&) = % Z?:l Vfi(&)

— mi . .
‘f Wy‘rﬁ Variance reduction methods

32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

* Initialize: # € R?

® For icpoch =1 to # of epochs
® Compute all gradients V f;(Z); store V(&) = % Z?:l Vfi(&)
® |nitialize zo =

— mi . .
‘f Wy‘rﬁ Variance reduction methods

32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

* Initialize: 7 € R?

® For icpoch =1 to # of epochs
® Compute all gradients V f;(Z); store V(&) = % Z?:l Vfi(&)
® |nitialize zo =
® For t = 1 to length of epochs (m)

— mi . .
‘f ;nylr; Variance reduction methods

32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

* Initialize: 7 € R?
® For icpoch =1 to # of epochs
® Compute all gradients V f;(Z); store V(&) = % Z?:l Vfi(&)
® |nitialize zo =
® For t = 1 to length of epochs (m)
* oy =w1—a V@) + (Vi (@) = Vi (@)]

— mi . .
‘f ;nylr; Variance reduction methods

32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

* Initialize: 7 € R?
® For icpoch =1 to # of epochs
® Compute all gradients V f;(Z); store V(&) = % Z?:l Vfi(&)
® |nitialize zo =
® For t = 1 to length of epochs (m)
* oy =w1—a V@) + (Vi (@) = Vi (@)]
® Update T = x¢

— mi . .
‘f ;nylr; Variance reduction methods

32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

* Initialize: 7 € R?
® For icpoch =1 to # of epochs
® Compute all gradients V f;(Z); store V(&) = % Z?:l Vfi(&)
® |nitialize zo =
® For t = 1 to length of epochs (m)
* oy =w1—a V@) + (Vi (@) = Vi (@)]
® Update T = x¢

— mi . .
‘f ;nylr; Variance reduction methods

32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

* Initialize: 7 € R?
® For icpoch =1 to # of epochs
® Compute all gradients V f;(Z); store V(&) = % Z?:l Vfi(&)
® |nitialize zo =
® For t = 1 to length of epochs (m)
* oy =w1—a V@) + (Vi (@) = Vi (@)]
® Update T = x¢

Notes:

® Two gradient evaluations per inner step.

— mi . .
‘f §ny1r; Variance reduction methods

32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

* Initialize: 7 € R?
® For icpoch =1 to # of epochs
® Compute all gradients V f;(Z); store V(&) = % 27:1 Vfi(Z)
® |nitialize zo =
® For t = 1 to length of epochs (m)
* oy =w1—a V@) + (Vi (@) = Vi (@)]
® Update T = x¢

Notes:

® Two gradient evaluations per inner step.
® Two parameters: length of epochs + step-size .

— mi . .
‘f §ny1r; Variance reduction methods

32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

* Initialize: 7 € R?
® For icpoch =1 to # of epochs
® Compute all gradients V f;(Z); store V(&) = % 27:1 Vfi(Z)
® |nitialize zo =
® For t = 1 to length of epochs (m)
* oy =w1—a V@) + (Vi (@) = Vi (@)]
® Update T = x¢

Notes:

® Two gradient evaluations per inner step.
® Two parameters: length of epochs + step-size .
® |inear convergence rate, simple proof.

— mi . .
‘f §ny1r; Variance reduction methods

32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

‘f — min
Tz

Adaptivity or scaling

Adaptivity or scaling

33

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let g(*) = V fi, (:v(k’l)), and update for j =1,...,p:

k k-1 k)y2
v = v+ ()
(k)
ORI R
J J (k)
v, te

Notes:

® AdaGrad does not require tuning the learning rate: o > 0 is a fixed constant, and the learning rate decreases

naturally over iterations.

‘f - fny"; Adaptivity or scaling

34

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adagrad (Duchi, Hazan, and Singer 2010)
Very popular adaptive method. Let g(*) = V fi, (:v(k’l)), and update for j =1,...,p:

k k-1 k)y2
v = v+ ()
(k)
ORI R
J J (k)
v, te

Notes:

® AdaGrad does not require tuning the learning rate: o > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.
® The learning rate of rare informative features diminishes slowly.

‘f - §“}‘§ Adaptivity or scaling 0 O

34

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let g(*) = V fi, (:v(k’l)), and update for j =1, ...

k k-1 k)y2
v = v+ ()
(k)
ORI R
J J (k)
v, te

Notes:
® AdaGrad does not require tuning the learning rate: o > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.

® The learning rate of rare informative features diminishes slowly.
® Can drastically improve over SGD in sparse problems.

‘f - §“}‘§ Adaptivity or scaling

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let g(*) = Vfik(w(k’l)), and update for j =1,..

k k—1 k)\2
v = v+ ()
(k)
N SN
J J (k)
v, te

Notes:

® AdaGrad does not require tuning the learning rate: o > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.

® The learning rate of rare informative features diminishes slowly.
® Can drastically improve over SGD in sparse problems.

® Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad,
etc. improve on this, popular in training deep neural networks.

‘f - fnﬂ Adaptivity or scaling

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adagrad (Duchi, Hazan, and Singer 2010)
Very popular adaptive method. Let g(*) = Vfik(w(k’l)), and update for j =1,...,p:

k k—1 k)\2
v = v+ ()
(k)
L0 =) 9
J J (k)
v, te

Notes:

® AdaGrad does not require tuning the learning rate: o > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.

® The learning rate of rare informative features diminishes slowly.

® Can drastically improve over SGD in sparse problems.

® Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad,
etc. improve on this, popular in training deep neural networks.

® The constant € is typically set to 107 to ensure that we do not suffer from division by zero or overly large step
sizes.

‘f - 5“.}‘; Adaptivity or scaling 0 O 34

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

RMSProp (Tieleman and Hinton, 2012)

An enhancement of AdaGrad that addresses its aggressive, monotonically decreasing learning rate. Uses a moving

average of squared gradients to adjust the learning rate for each weight. Let ¢®) = V fi,, (m(k’n) and update rule
forj=1,...,p:

k k— k
v = 30TV 4 (1=)(g5")?

o
2B — k=D J
J J (k)
v, +e€
Notes:

® RMSProp divides the learning rate for a weight by a running average of the magnitudes of recent gradients for
that weight.

‘f - fnﬂ Adaptivity or scaling

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

RMSProp (Tieleman and Hinton, 2012)

An enhancement of AdaGrad that addresses its aggressive, monotonically decreasing learning rate. Uses a moving
average of squared gradients to adjust the learning rate for each weight. Let ¢®) = V fi,, (m(k’n) and update rule
forj=1,...,p:
k k—1 k
v = 30TV 4 (1=)(g5")?
k
o

2B — =1

J J @

(k)
v, + €
Notes:

® RMSProp divides the learning rate for a weight by a running average of the magnitudes of recent gradients for
that weight.

® Allows for a more nuanced adjustment of learning rates than AdaGrad, making it suitable for non-stationary
problems.

‘f - fnﬂ Adaptivity or scaling

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

RMSProp (Tieleman and Hinton, 2012)

An enhancement of AdaGrad that addresses its aggressive, monotonically decreasing learning rate. Uses a moving
average of squared gradients to adjust the learning rate for each weight. Let ¢®) = V fi,, (m(k’n) and update rule
forj=1,...,p:
k k—1 k
v = 30TV 4 (1=)(g5")?
k
o

2B — =1

J J @

(k)
v, + €

Notes:

® RMSProp divides the learning rate for a weight by a running average of the magnitudes of recent gradients for
that weight.

® Allows for a more nuanced adjustment of learning rates than AdaGrad, making it suitable for non-stationary
problems.

® Commonly used in training neural networks, particularly in recurrent neural networks.

‘f - 5“.}‘; Adaptivity or scaling D0 O 35

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adadelta (Zeiler, 2012)

An extension of RMSProp that seeks to reduce its dependence on a manually set global learning rate. Instead of
accumulating all past squared gradients, Adadelta limits the window of accumulated past gradients to some fixed
size w. Update mechanism does not require learning rate a:

v =Y 4 (11— 7)(g{Y)?

k k—1 ~(k
29 = gD _ 50

k— ~(k
Az = pAzl Y + (1 p)(")?
Notes:

® Adadelta adapts learning rates based on a moving window of gradient updates, rather than accumulating all
past gradients. This way, learning rates adjusted are more robust to changes in model’'s dynamics.

‘f - 5“.}‘; Adaptivity or scaling 0 O 36

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adadelta (Zeiler, 2012)

An extension of RMSProp that seeks to reduce its dependence on a manually set global learning rate. Instead of
accumulating all past squared gradients, Adadelta limits the window of accumulated past gradients to some fixed
size w. Update mechanism does not require learning rate a:

v =Y 4 (11— 7)(g{Y)?

k k—1 ~(k
29 = gD _ 50

k— ~(k
Az = pAzl Y + (1 p)(")?
Notes:

® Adadelta adapts learning rates based on a moving window of gradient updates, rather than accumulating all
past gradients. This way, learning rates adjusted are more robust to changes in model’'s dynamics.
® The method does not require an initial learning rate setting, making it easier to configure.

‘f - 5“.}‘; Adaptivity or scaling 0 O 36

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adadelta (Zeiler, 2012)

An extension of RMSProp that seeks to reduce its dependence on a manually set global learning rate. Instead of
accumulating all past squared gradients, Adadelta limits the window of accumulated past gradients to some fixed
size w. Update mechanism does not require learning rate a:

v =Y 4 (11— 7)(g{Y)?

k k—1 ~(k
29 = gD _ 50

A = pAzY + (1 - p)(3)’

J
Notes:

® Adadelta adapts learning rates based on a moving window of gradient updates, rather than accumulating all
past gradients. This way, learning rates adjusted are more robust to changes in model’'s dynamics.

® The method does not require an initial learning rate setting, making it easier to configure.

® Often used in deep learning where parameter scales differ significantly across layers.

‘f - 5“.}‘; Adaptivity or scaling 0 O 36

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adam (Kingma and Ba, 2014)

Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past
gradients and squared gradients. Update rule:

mg® = fumit ™ + (1= B1)g;”

o = Bl Y+ (1=) (0))°

(k)
. v,

m®
- J .
RERET AR

k) _ (k1) 1,
x. =x —a—
U ENOR
Notes:

® Adam is suitable for large datasets and high-dimensional optimization problems.

‘f - §“}‘§ Adaptivity or scaling 0 O

37

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adam (Kingma and Ba, 2014)

Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past
gradients and squared gradients. Update rule:

mg® = fumit ™ + (1= B1)g;”

k k—1 k
vl = ool + (1 - Ba) (917
o

m; = D
J x j %
1—py 1—5;

'ﬁ’L'
i =% —a :
\/'Uij"—é

(k)
m;

Notes:

® Adam is suitable for large datasets and high-dimensional optimization problems.
® [t corrects the bias towards zero in the initial moments seen in other methods like RMSProp, making the
estimates more accurate.

‘f - fnﬂ Adaptivity or scaling @0 O

37

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adam (Kingma and Ba, 2014)

Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past
gradients and squared gradients. Update rule:

mg® = fumit ™ + (1= B1)g;”
vt = Bov) T (1= 2 (g")”

(k) (k)
m; . v;

PTIeE YT

_ e
J J \/’fTJ + €
Notes:
® Adam is suitable for large datasets and high-dimensional optimization problems.
® [t corrects the bias towards zero in the initial moments seen in other methods like RMSProp, making the

estimates more accurate.

® Highly popular in training deep learning models, owing to its efficiency and straightforward implementation.

‘f - EHA}‘; Adaptivity or scaling

37

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Adam (Kingma and Ba, 2014)

Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past
gradients and squared gradients. Update rule:

mg® = fumit ™ + (1= B1)g;”
vt = Bov) T (1= 2 (g")”

(k) (k)
m; . v;

PTIeE YT

'ﬁ'L'
J J o ’
\/ITj—Fé

Notes:

® Adam is suitable for large datasets and high-dimensional optimization problems.

® [t corrects the bias towards zero in the initial moments seen in other methods like RMSProp, making the
estimates more accurate.

® Highly popular in training deep learning models, owing to its efficiency and straightforward implementation.

® However, the proposed algorithm in initial version does not converge even in convex setting (later fixes
appeared)

‘f - 5“.}‘; Adaptivity or scaling 0 O 37

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

‘f — min
Tz

General introduction

General introduction

38

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Optimization for Neural Network training

Neural network is a function, that takes an input = and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear
transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

‘fﬁ}fﬂ.}‘; General introduction 0 O 39

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Optimization for Neural Network training

Neural network is a function, that takes an input = and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear
transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

NN(w,z) =opowro...o010wi0x w = (W1,b1,...Wr,br),

‘fﬁ}fﬂ.}‘; General introduction 0 O 39

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Optimization for Neural Network training

Neural network is a function, that takes an input = and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear

transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

NN(w,z) =opowro...o010wi0x w = (W1,b1,...Wr,br),

where L is the number of layers, o; - non-linear activation function, w; = W,z + b; - linear layer.

— min . .
‘f Tz General introduction

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Optimization for Neural Network training

Neural network is a function, that takes an input = and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear

transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

NN(w,z) =opowro...o010wi0x w = (W1,b1,...Wr,br),

where L is the number of layers, o; - non-linear activation function, w; = W,z + b; - linear layer.

Typically, we aim to find w in order to solve some problem (let say to be NN (w,z;) ~ y; for some training data
Zi,yi). In order to do it, we solve the optimization problem:

— min . .
‘f Tz General introduction

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Optimization for Neural Network training

Neural network is a function, that takes an input = and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear

transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

NN(w,z) =opowro...o010wi0x w = (W1,b1,...Wr,br),

where L is the number of layers, o; - non-linear activation function, w; = W,z + b; - linear layer.

Typically, we aim to find w in order to solve some problem (let say to be NN (w,z;) ~ y; for some training data
Zi,yi). In order to do it, we solve the optimization problem:

N

1
L(w, X,y) — min le Zi,Yi) — min
=1

‘f% 5“.}‘; General introduction 0 O 39

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Loss functions

In the context of training neural networks, the loss function, denoted by [(w, x;,y;), measures the discrepancy
between the predicted output NN (w,z;) and the true output y;. The choice of the loss function can significantly
influence the training process. Common loss functions include:

Mean Squared Error (MSE)

Used primarily for regression tasks. It computes the square of the difference between predicted and true values,
averaged over all samples.

N
MSE(w, X, y) Z NN (w,z) —y5)?
=1

Cross-Entropy Loss
Typically used for classification tasks. It measures the dissimilarity between the true label distribution and the
predictions, providing a probabilistic interpretation of classification.

N C

Cross-Entropy(w, X, y) = 1 Z Yic log(NN(w, z;)c)
N ;

i1=1 c=1
where y; . is a binary indicator (0 or 1) if class label ¢ is the correct classification for observation ¢, and C' is the
number of classes.

‘f% 5“.}‘; General introduction 0 O 40

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Simple example: Fashion MNIST classification problem

T-shirt/top Trouser Pullover Sandal Shirt Sneaker Ankle boot

Em=Ce

Training a Neural Network on Fashion MNIST.
79510 trainable parameters.

Train Loss Train Accuracy Test loss
— sSGD 0.8 102 —e— sGD
107 Adam Adam
2 —— SGD Momentum 06 2 —#- SGD Momentum
£ —— SGD Nesterov z 13 —— SGD Nesterov
9 100 H § 10!
§ ;d 0.4 — sGD §
S Adam S
; 0.2 —— SGD Momentum
10 —— SGD Nesterov 10°
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 2 4 6
Iteration Iteration Time (s)
Test Loss Test Accuracy Test Accuracy
0.8 0.8
10? —e— SGD
Adam
2 —m— SGD Momentum 0.6 0.6
£ —4— SGD Nesterov z z
G 10t g g
o 204 goa
g g —e— SGD g —e— SGD
S Adam Adam
0.2 —#— SGD Momentum 0.2 —#- SGD Momentum
10° —&— SGD Nesterov —4— SGD Nesterov
0 2 4 6 8 10 0 2 4 6
Epoch Time (s)

‘f%mi‘; General introduction Figure 3: eOpen in COIab 0 O

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/NN_optimization.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

‘f — min
Tz

Loss surface of Neural Networks

Loss surface of Neural Networks

42

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Visualizing loss surface of neural network via line projection

We denote the initial point as wo, representing the weights of the neural network at initialization. The weights after
training are denoted as .

Initially, we generate a random Gaussian direction w1 € R?, which inherits the magnitude of the original neural
network weights for each parameter group. Subsequently, we sample the training and testing loss surfaces at points
along the direction w1, situated close to either wg or .

Mathematically, this involves evaluating:
L(a) = L(wo + awy), where a € [—b,b].

Here, a plays the role of a coordinate along the w; direction, and b stands for the bounds of interpolation.
Visualizing L(«) enables us to project the p-dimensional surface onto a one-dimensional axis.

It is important to note that the characteristics of the resulting graph heavily rely on the chosen projection direction.
It's not feasible to maintain the entirety of the information when transforming a space with 100,000 dimensions into
a one-dimensional line through projection. However, certain properties can still be established. For instance, if
L(a) |a=o is decreasing, this indicates that the point lies on a slope. Additionally, if the projection is non-convex, it
implies that the original surface was not convex.

‘f - 5“.}‘; Loss surface of Neural Networks 0 O 43

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Visualizing loss surface of neural network

No Dropout
Loss surface. Line projection around the starting point Loss surface. Line projection around the final point
2.3351 —— Train —— Train
—— Test 0.44 1 —— Test
@ Weights After Initialization @ \Weights After Training
0.42 A
2.330 1
0.40
§ 2.3251 £ 0384
+ +
))
& <
0.36
2.320 4
0.34
.32
2.315 4 03
T T T T T T T 0.30 +— T T T T T T
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
a a

‘f - ;nyul Loss surface of Neural Networks 0 O

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/NN_Surface_Visualization.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Visualizing loss surface of neural network

Dropout 0.2
Loss surface. Line projection around the starting point Loss surface. Line projection around the final point
2.3351 —— Train —— Train
—— Test 0.44 1 —— Test
@ Weights After Initialization @ \Weights After Training
0.42 A
2.330 1
0.40
§ 2.3251 £ 0384
+ +
))
& <
0.36
2.320 4
0.34
.32
2.315 4 03
T T T T T T T 0.30 +— T T T T T
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
a a

‘f - ;nyul Loss surface of Neural Networks 0 O

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/NN_Surface_Visualization.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Plane projection
We can explore this idea further and draw the projection of the loss surface to the plane, which is defined by 2

random vectors. Note, that with 2 random gaussian vectors in the huge dimensional space are almost certainly
orthogonal. So, as previously, we generate random normalized gaussian vectors wi, w2 € R and evaluate the loss

function
L(a, B) = L(wo + aw; + Bws), where a, B € [—b,b]°.

No Dropout. Plane projection of loss surface.

Before training After training

B °
25

z
=
+
E 06
o
+ 232 05
e
= ‘6‘ o 0.4
231 £
4
231 . o
S
o §
~
s ° 0
a 8 a
2 a2,

* Weights before training §% Train Loss $% Testloss o Weights after training

Figure 6: ®@Open in colab

% Trainloss W TestLoss

‘f - ;nyu; Loss surface of Neural Networks

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/NN_Surface_Visualization.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Can plane projections be useful? !

Figure 7: The loss surface of ResNet-56

without skip connections Figure 8: The loss surface of ResNet-56 with skip connections

lVisualizing the Loss Landscape of Neural Nets, Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, Tom Goldstein
‘f g ;nyl,'; Loss surface of Neural Networks Q0

46

https://arxiv.org/abs/1712.09913
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Can plane projections be useful, really?

- 2256 - >256

15
‘ - 2256 - 2256
-4
-1
—nq

- 0.4

->256

-2256 ->256

| 9 P

- 0.4

Figure 9: Examples of a loss landscape of a typical CNN model on FashionMNIST and CIFAR10 datasets found with MPO.

Loss values are color-coded according to a logarithmic scale

2Loss Landscape Sightseeing with Multi-Point Optimization, lvan Skorokhodov, Mikhail Burtsev

‘f - ?‘y“} Loss surface of Neural Networks

47

https://arxiv.org/abs/1910.03867
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Impact of initialization 3

@ Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a “good”
solution hard, requires careful tuning.

® Don't initialize all weights to be the same — why?

‘f - ;nylr; Loss surface of Neural Networks 0 O

https://cs231n.github.io/neural-networks-2/
https://proceedings.mlr.press/v28/sutskever13.html
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Impact of initialization 3

@ Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a “good”
solution hard, requires careful tuning.

® Don't initialize all weights to be the same — why?
® Random: Initialize randomly, e.g., via the Gaussian N (0, 02), where std o depends on the number of neurons in
a given layer. Symmetry breaking.

‘f - §ny1r; Loss surface of Neural Networks 0 O 48

https://cs231n.github.io/neural-networks-2/
https://proceedings.mlr.press/v28/sutskever13.html
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Impact of initialization 3

@ Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a “good”
solution hard, requires careful tuning.

® Don't initialize all weights to be the same — why?
® Random: Initialize randomly, e.g., via the Gaussian N (0, 02), where std o depends on the number of neurons in

a given layer. Symmetry breaking.
® One can find more useful advices here

30n the importance of initialization and momentum in deep learning llya Sutskever, James Martens, George Dahl, Geoffrey Hinton
0 O 48

L mi
‘f 510;1; Loss surface of Neural Networks

https://cs231n.github.io/neural-networks-2/
https://proceedings.mlr.press/v28/sutskever13.html
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Impact of initialization *

1
0.95
0.95
0.9
0.9
= 5
5 A 2 085
i W W

0.85 1 1.
—_ EﬁzVaT[Wz] =1 ours 08r — Eanar[w,] =1 ours

0.8

- AVarlw] =1 Xavier O75F o AVarlw] =1 Xavier
‘ : : ‘ : : \
075, 05 1 15 2 25 3 0 1 2 3 4 5 C 7 8 9
Epoch Epoch
Figure 10: 22-layer ReLU net: good init converges faster Figure 11: 30-layer ReLU net: good init is able to converge

4Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, Kaiming He, Xiangyu Zhang, Shaoqing Ren,
Jian Sun

‘f - Pay"; Loss surface of Neural Networks 0 O 49

https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Grokking °

Modular Division (training on 50% of data)

100 — train U i LA E
— val
80
.. 60
o
o
=)
v
& 40
20
0
10t 10?2 103 10* 10° 106

Optimization Steps

Figure 12: Training transformer with 2 layers, width 128, and 4 attention heads, with a total of about 4 - 10° non-embedding
parameters. Reproduction of experiments (~ half an hour) is available here

SGrokking: Generalization Beyond Overfitting on Small Algorithmic Datasets, Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin,

ergan% Misra
‘ Loss surface of Neural Networks 0 O 50

242

https://colab.research.google.com/drive/1r3Wg84XECq57fT2B1dvHLSJrJ2sjIDCJ?usp=sharing
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Double Descent °

under-parameterized over-parameterized

Test risk/ .
%IJ “classical” “modern”
E regime ' interpolating regime
~ Training risk:
=~ - . _interpolation threshold

—— — — — — — — — —

Capacity of H

®Reconciling modern machine learning practice and the bias-variance trade-off, Mikhail Belkin, Daniel Hsu, Siyuan Ma, Soumik Mandal
‘f - 5“.}‘; Loss surface of Neural Networks 0 O 51

https://arxiv.org/abs/1812.11118
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Exponential learning rate

® Exponential Learning Rate Schedules for Deep Learning

L mi
‘f ;nylr; Loss surface of Neural Networks

52

http://www.offconvex.org/2020/04/24/ExpLR1/
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

‘f — min
Tz

Modern problems

Modern problems

53

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Wide vs narrow local minima
Y3Kune un Wwunpokune nokKasibHble MUHUMYMb

0.5 A1

0.4 1

0.3 A

Loss

0.2 1

0.1 1

=5 0 5 10 15 20

‘f - ;nylr; Modern problems

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Wide vs narrow local minima
Y3Kune u Wwmpokune noKasibHble MUHUMYMb

‘f — min
Tz

0.1 1

=5 0 5 10 15 20 25 30

Modern problems

54

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Wide vs narrow local minima
Y3Kune u Wwmpokune noKasibHble MUHUMYMb

‘f — min
Tz

0.1 1

=5 0 5 10 15 20 25 30

Modern problems

54

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Stochasticity allows to escape local minima

CToxacTu4ecKnin rpagneHTHbIN CyCcK
BbIMPbIrMBaeT N3 JIOKaJIbHbIX MUHUMYMOB

‘f - ?qyu} Modern problems

55

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Local divergence can also be benefitial

FpafMeHTHbIN CryCcK C 60bLLMM LWarom
n3beraeT y3KOro JIOKasibHOro MMHUMYyMa

‘f - ;nyul Modern problems

56

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

‘f — min
Tz

Automatic Differentiation stories

Automatic Differentiation stories

57

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient Vanishing/Exploding

® Multiplication of a chain of matrices in backprop

— mi . - .
‘f ;nylr; Automatic Differentiation stories

58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient Vanishing/Exploding

® Multiplication of a chain of matrices in backprop
® If several of these matrices are “small” (i.e., norms < 1), when we multiply them, the gradient will decrease
exponentially fast and tend to vanish (hurting learning in lower layers much more)

‘f - 511;1; Automatic Differentiation stories 0 O

58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient Vanishing/Exploding

® Multiplication of a chain of matrices in backprop
® If several of these matrices are “small” (i.e., norms < 1), when we multiply them, the gradient will decrease

exponentially fast and tend to vanish (hurting learning in lower layers much more)
® Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients

are unstable.

— mi . - .
‘f 5“.}‘; Automatic Differentiation stories

58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient Vanishing/Exploding

Multiplication of a chain of matrices in backprop

If several of these matrices are “small” (i.e., norms < 1), when we multiply them, the gradient will decrease

exponentially fast and tend to vanish (hurting learning in lower layers much more)

® Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients
are unstable.

® Coping with unstable gradients poses several challenges, and must be dealt with to achieve good results.

‘f - 5“.}‘; Automatic Differentiation stories 0 O 58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture

Forward pass

OO0
O=0202020

Backward pass

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f. The gradient of the loss with respect to the activations and parameters marked with b.

‘f - 511;1; Automatic Differentiation stories 0 O 59

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture

Forward pass

OO0
O=0202020

Backward pass

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f. The gradient of the loss with respect to the activations and parameters marked with b.

! Important

The results obtained for the f nodes are needed to compute the b nodes.

‘f - ;nylr; Automatic Differentiation stories 0 O 59

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

@D D D D D
&8 @

VAR, <O

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

‘f - §ny1r; Automatic Differentiation stories D0 O 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

// \\\ / 777\ /// \ / \\ /// \
[X /}—»()—»4\ f /»—»{ f —)
AR N R N

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

‘f - §ny1r; Automatic Differentiation stories 0 O 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

// \\\ / 777\ /// \ / \\ /// \
[X /}—»()—»4\ f /»—»{ f —)
AR N R N

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

‘f - §ny1r; Automatic Differentiation stories 0 O 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

D DD
D) — J

o \/ /Q 1
N)

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

® Optimal in terms of computation: it only computes each node once.

‘f - ;nylr; Automatic Differentiation stories 0 O 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

D DD
D) — J

o \/ /Q 1
N)

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

® Optimal in terms of computation: it only computes each node once.

‘f - ;nylr; Automatic Differentiation stories 0 O 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

D DD
D) — J

o \/ /Q 1
N)

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

® Optimal in terms of computation: it only computes each node once.

® High memory usage. The memory usage grows linearly with the number of layers in the neural network.

‘f - ;nylr; Automatic Differentiation stories 0 O 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation
o= O="
\) \l/

O20a0s "o

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

‘f - §ny1r; Automatic Differentiation stories 0 O 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation
OO
\ / \l/

OaO0aOn 'a =

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

‘f - fny"; Automatic Differentiation stories D0 O 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation
OO
\ / \l/

OaO0aOn 'a =

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

‘f - fny"; Automatic Differentiation stories D0 O 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

® Optimal in terms of memory: there is no need to store all activations in memory.

‘f - §ny1r; Automatic Differentiation stories D0 O 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

® Optimal in terms of memory: there is no need to store all activations in memory.

‘f - §ny1r; Automatic Differentiation stories D0 O 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

® Optimal in terms of memory: there is no need to store all activations in memory.

o Computationally inefficient. The number of node evaluations scales with 1%, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

‘f - ;nylr; Automatic Differentiation stories D0 O 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation

checkpoint

Figure 16: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color

indicates nodes that are stored in memory.

— mi . - .
‘f ;nylr; Automatic Differentiation stories

62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
che‘c‘:lf_qoint

N

Figure 16: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

‘f - ﬁ}‘i Automatic Differentiation stories 0 O 62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
che‘c‘:lf_qoint

N

Figure 16: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

‘f - ﬁ}‘i Automatic Differentiation stories 0 O 62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
che‘c‘:lf_qoint

. + ..". /

X
N4

Figure 16: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color

indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net

activations as checkpoint nodes, that will be stored in memory.

last checkpoint preceding it when computing that b node during backprop.

® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the

— mi . - .
‘f 511;1; Automatic Differentiation stories

62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
che‘c‘:lf_qoint

. + ..". /

X
N4

Figure 16: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color

indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net

activations as checkpoint nodes, that will be stored in memory.

last checkpoint preceding it when computing that b node during backprop.

® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the

— mi . - .
‘f 511;1; Automatic Differentiation stories

62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation

checkpoint

. + ..". /

@
A

Figure 16: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

® Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

‘f - W;rﬁ Automatic Differentiation stories 0 O 62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient checkpointing visualization

The animated visualization of the above approaches €)

An example of using a gradient checkpointing

— mi . - .
‘f §ny1r; Automatic Differentiation stories

63

https://github.com/cybertronai/gradient-checkpointing
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

‘f — min
Tz

Large batch training

Large batch training

64

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Large batch training

0.3 T T T T T
116

/a —~
S 0.28 | lg &
“© =
C N
© o
o o>
=0.24 12 &
© 8
o ()
o L i

0.2 ‘ ‘ ‘ ! : 0.5

256 512 1k 2k 4k 8k 11k

mini-batch size

‘f‘} ;nyl,'; Large batch training 0 O 65

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

-

arge batch training

w
(&)
T

w
o
T

[\
(63}
T

ImageNet top-1 validation error

20 | | | |
64 128 256 512 1k 2k 4k 8k 16k 32k 64k

‘f‘}?,lyi,l} Large batch training mini-hﬂf(‘_h gi?Q 0 O 66

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

	Convergence rate reminder
	Finite-sum problem
	Stochastic Gradient Descent (SGD)
	Mini-batch SGD
	Finite-sum problem
	Variance reduction methods
	Adaptivity or scaling
	General introduction
	Loss surface of Neural Networks
	Modern problems
	Automatic Differentiation stories
	Large batch training

