
Gradient descent and accelerated methods -
heavy ball method. Nesterov’s accelerated

method. Features of nonsmooth optimization.
Subgradient method. Proximal gradient

method. Newton’s method and
quasi-Newton’s methods

Daniil Merkulov

Applied Math for Data Science. Sberuniversity.

v § } 1

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient Descent

Gradient Descent v § } 2

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Exact line search aka steepest descent
αk = arg min

α∈R+
f(xk+1) = arg min

α∈R+
f(xk − α∇f(xk))

More theoretical than practical approach. It also allows you to analyze the convergence, but
often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is
orthogonal to the previous one:

αk = arg min
α∈R+

f(xk − α∇f(xk))

Optimality conditions:

∇f(xk+1)⊤∇f(xk) = 0

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent with step 3.5e-01
Steepest Descent
Start Point
Optimal Point

0 5 10 15 20 25 30
Iterations

10 26

10 22

10 18

10 14

10 10

10 6

10 2

102

Fu
nc

tio
n

va
lu

e
(lo

g
sc

al
e)

Convergence of Function Value

Gradient Descent with step 3.5e-01
Steepest Descent

Figure 1: Steepest
Descent

Open In Colab ♣
Gradient Descent v § } 3

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Steepest_descent.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Strongly convex quadratics

Strongly convex quadratics v § } 4

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 5

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 5

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 5

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 5

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 5

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 5

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 5

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk)

= xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1

− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1

− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α)

= min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0

f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis

So, we have a linear convergence in the domain with rate κ−1
κ+1 = 1 − 2

κ+1 , where κ = L
µ

is sometimes called
condition number of the quadratic problem.

κ ρ Iterations to decrease domain gap 10 times Iterations to decrease function gap 10 times
1.1 0.05 1 1
2 0.33 3 2
5 0.67 6 3
10 0.82 12 6
50 0.96 58 29
100 0.98 116 58
500 0.996 576 288
1000 0.998 1152 576

Strongly convex quadratics v § } 7

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Polyak-Lojasiewicz smooth case

Polyak-Lojasiewicz smooth case v § } 8

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Polyak-Lojasiewicz condition. Linear convergence of gradient descent without
convexity
PL inequality holds if the following condition is satisfied for some µ > 0,

∥∇f(x)∥2 ≥ 2µ(f(x) − f∗) ∀x

It is interesting, that the Gradient Descent algorithm might converge linearly even without convexity.

The following functions satisfy the PL condition but are not convex. 3Link to the code

f(x) = x2 + 3 sin2(x)

3 2 1 0 1 2 3
x

0

2

4

6

8

f(x
)

Function, that satisfies
 Polyak- Lojasiewicz condition

f(x) = x2 + 3sin2(x)

Figure 2: PL function

f(x, y) = (y − sin x)2

2

x

4
2

0
2

4

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

f(x
, y

)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Non-convex PL function

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 3: PL function

Polyak-Lojasiewicz smooth case v § } 9

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/PL_function.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Polyak-Lojasiewicz condition. Linear convergence of gradient descent without
convexity
PL inequality holds if the following condition is satisfied for some µ > 0,

∥∇f(x)∥2 ≥ 2µ(f(x) − f∗) ∀x

It is interesting, that the Gradient Descent algorithm might converge linearly even without convexity.

The following functions satisfy the PL condition but are not convex. 3Link to the code

f(x) = x2 + 3 sin2(x)

3 2 1 0 1 2 3
x

0

2

4

6

8

f(x
)

Function, that satisfies
 Polyak- Lojasiewicz condition

f(x) = x2 + 3sin2(x)

Figure 2: PL function

f(x, y) = (y − sin x)2

2

x

4
2

0
2

4

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

f(x
, y

)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Non-convex PL function

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 3: PL function

Polyak-Lojasiewicz smooth case v § } 9

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/PL_function.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis

ñ Theorem

Consider the Problem

f(x) → min
x∈Rd

and assume that f is µ-Polyak-Lojasiewicz and L-smooth, for some L ≥ µ > 0.
Consider (xk)k∈N a sequence generated by the gradient descent constant stepsize algorithm, with a stepsize
satisfying 0 < α ≤ 1

L
. Then:

f(xk) − f∗ ≤ (1 − αµ)k(f(x0) − f∗).

Polyak-Lojasiewicz smooth case v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: linear least squares

0 250 500 750
Iteration

10 6

10 4

10 2

100

|f(
x)

f* |

0 250 500 750
Iteration

10 3

10 1

101

x k
x

*
0 250 500 750

Iteration

0.5

0.6

0.7

Tr
ai

n
ac

cu
ra

cy

0 250 500 750
Iteration

0.55

0.60

0.65

0.70

Te
st

 a
cc

ur
ac

y

0.00 0.25 0.50 0.75
Time

10 6

10 4

10 2

100

|f(
x)

f* |

0.00 0.25 0.50 0.75
Time

10 3

10 1

101

x k
x

*

0.00 0.25 0.50 0.75
Time

0.5

0.6

0.7

Tr
ai

n
ac

cu
ra

cy

0.00 0.25 0.50 0.75
Time

0.55

0.60

0.65

0.70

Te
st

 a
cc

ur
ac

y

Strongly convex binary logistic regression. mu=0.1.

GD 0.1 GD 0.11

Figure 4: Convergence both in domain and in function value for regularized quadratics
Polyak-Lojasiewicz smooth case v § } 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Smooth convex case

Smooth convex case v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Smooth convex case

ñ Theorem

Consider the Problem

f(x) → min
x∈Rd

and assume that f is convex and L-smooth, for some L > 0.
Let (xk)k∈N be the sequence of iterates generated by the gradient descent constant stepsize algorithm, with a
stepsize satisfying 0 < α ≤ 1

L
. Then, for all x∗ ∈ argmin f , for all k ∈ N we have that

f(xk) − f∗ ≤ ∥x0 − x∗∥2

2αk
.

Smooth convex case v § } 13

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: linear least squares

0 1000 2000
Iteration

10 2

100

|f(
x)

f* |

0 1000 2000
Iteration

101
1.1 × 101
1.2 × 101
1.3 × 101
1.4 × 101
1.5 × 101
1.6 × 101
1.7 × 101

x k
x

*
0 1000 2000

Iteration

0.5

0.6

0.7

Tr
ai

n
ac

cu
ra

cy

0 1000 2000
Iteration

0.50

0.55

0.60

0.65

0.70

Te
st

 a
cc

ur
ac

y

0 1
Time

10 2

100

|f(
x)

f* |

0 1
Time

101
1.1 × 101
1.2 × 101
1.3 × 101
1.4 × 101
1.5 × 101
1.6 × 101
1.7 × 101

x k
x

*

0 1
Time

0.5

0.6

0.7

Tr
ai

n
ac

cu
ra

cy

0 1
Time

0.50

0.55

0.60

0.65

0.70

Te
st

 a
cc

ur
ac

y

Convex binary logistic regression. mu=0.

GD 0.3 GD 0.7

Figure 5: Convergence in function value for convex (but not strongly convex) quadratics
Smooth convex case v § } 14

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds

Lower bounds v § } 15

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

How optimal is O
(

1
k

)
?

• Is it somehow possible to understand, that the obtained convergence is the fastest possible with this class of
problem and this class of algorithms?

• The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

• Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(1)

Lower bounds v § } 16

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

How optimal is O
(

1
k

)
?

• Is it somehow possible to understand, that the obtained convergence is the fastest possible with this class of
problem and this class of algorithms?

• The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

• Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(1)

Lower bounds v § } 16

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

How optimal is O
(

1
k

)
?

• Is it somehow possible to understand, that the obtained convergence is the fastest possible with this class of
problem and this class of algorithms?

• The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

• Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(1)

Lower bounds v § } 16

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Smooth convex case

ñ Theorem

There exists a function f that is L-smooth and convex such that any method 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

• No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f , the convergence rate is lower bounded as O

(
1

k2

)
.

• The key to the proof is to explicitly build a special function f .

Lower bounds v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Smooth convex case

ñ Theorem

There exists a function f that is L-smooth and convex such that any method 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

• No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f , the convergence rate is lower bounded as O

(
1

k2

)
.

• The key to the proof is to explicitly build a special function f .

Lower bounds v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Smooth convex case

ñ Theorem

There exists a function f that is L-smooth and convex such that any method 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

• No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f , the convergence rate is lower bounded as O

(
1

k2

)
.

• The key to the proof is to explicitly build a special function f .

Lower bounds v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Recap

Recap v § } 18

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Recap

Gradient Descent: min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk)

convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)

f(xk)−f∗ ∼ O
(

1√
k

)
∥∇f(xk)∥2 ∼ O

(1
k

)
f(xk) − f∗ ∼ O

(1
k

)
∥xk − x∗∥2 ∼ O

((
1 − µ

L

)k
)

kε ∼ O
(1

ε2

)
kε ∼ O

(1
ε

)
kε ∼ O

(1
ε

)
kε ∼ O

(
κ log 1

ε

)

For smooth strongly convex we have:

f(xk) − f∗ ≤
(

1 − µ

L

)k

(f(x0) − f∗).

Note also, that for any x

1 − x ≤ e−x

Finally we have

ε = f(xkε) − f∗ ≤
(

1 − µ

L

)kε

(f(x0) − f∗)

≤ exp
(

−kε
µ

L

)
(f(x0) − f∗)

kε ≥ κ log f(x0) − f∗

ε
= O

(
κ log 1

ε

)

Question: Can we do faster, than this using the first-order information? Yes, we can.

Recap v § } 19

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Recap

Gradient Descent: min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk)

convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)

f(xk)−f∗ ∼ O
(

1√
k

)
∥∇f(xk)∥2 ∼ O

(1
k

)
f(xk) − f∗ ∼ O

(1
k

)
∥xk − x∗∥2 ∼ O

((
1 − µ

L

)k
)

kε ∼ O
(1

ε2

)
kε ∼ O

(1
ε

)
kε ∼ O

(1
ε

)
kε ∼ O

(
κ log 1

ε

)
For smooth strongly convex we have:

f(xk) − f∗ ≤
(

1 − µ

L

)k

(f(x0) − f∗).

Note also, that for any x

1 − x ≤ e−x

Finally we have

ε = f(xkε) − f∗ ≤
(

1 − µ

L

)kε

(f(x0) − f∗)

≤ exp
(

−kε
µ

L

)
(f(x0) − f∗)

kε ≥ κ log f(x0) − f∗

ε
= O

(
κ log 1

ε

)

Question: Can we do faster, than this using the first-order information? Yes, we can.

Recap v § } 19

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Recap

Gradient Descent: min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk)

convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)

f(xk)−f∗ ∼ O
(

1√
k

)
∥∇f(xk)∥2 ∼ O

(1
k

)
f(xk) − f∗ ∼ O

(1
k

)
∥xk − x∗∥2 ∼ O

((
1 − µ

L

)k
)

kε ∼ O
(1

ε2

)
kε ∼ O

(1
ε

)
kε ∼ O

(1
ε

)
kε ∼ O

(
κ log 1

ε

)
For smooth strongly convex we have:

f(xk) − f∗ ≤
(

1 − µ

L

)k

(f(x0) − f∗).

Note also, that for any x

1 − x ≤ e−x

Finally we have

ε = f(xkε) − f∗ ≤
(

1 − µ

L

)kε

(f(x0) − f∗)

≤ exp
(

−kε
µ

L

)
(f(x0) − f∗)

kε ≥ κ log f(x0) − f∗

ε
= O

(
κ log 1

ε

)

Question: Can we do faster, than this using the first-order information? Yes, we can.

Recap v § } 19

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Recap

Gradient Descent: min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk)

convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)

f(xk)−f∗ ∼ O
(

1√
k

)
∥∇f(xk)∥2 ∼ O

(1
k

)
f(xk) − f∗ ∼ O

(1
k

)
∥xk − x∗∥2 ∼ O

((
1 − µ

L

)k
)

kε ∼ O
(1

ε2

)
kε ∼ O

(1
ε

)
kε ∼ O

(1
ε

)
kε ∼ O

(
κ log 1

ε

)
For smooth strongly convex we have:

f(xk) − f∗ ≤
(

1 − µ

L

)k

(f(x0) − f∗).

Note also, that for any x

1 − x ≤ e−x

Finally we have

ε = f(xkε) − f∗ ≤
(

1 − µ

L

)kε

(f(x0) − f∗)

≤ exp
(

−kε
µ

L

)
(f(x0) − f∗)

kε ≥ κ log f(x0) − f∗

ε
= O

(
κ log 1

ε

)
Question: Can we do faster, than this using the first-order information?

Yes, we can.

Recap v § } 19

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Recap

Gradient Descent: min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk)

convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)

f(xk)−f∗ ∼ O
(

1√
k

)
∥∇f(xk)∥2 ∼ O

(1
k

)
f(xk) − f∗ ∼ O

(1
k

)
∥xk − x∗∥2 ∼ O

((
1 − µ

L

)k
)

kε ∼ O
(1

ε2

)
kε ∼ O

(1
ε

)
kε ∼ O

(1
ε

)
kε ∼ O

(
κ log 1

ε

)
For smooth strongly convex we have:

f(xk) − f∗ ≤
(

1 − µ

L

)k

(f(x0) − f∗).

Note also, that for any x

1 − x ≤ e−x

Finally we have

ε = f(xkε) − f∗ ≤
(

1 − µ

L

)kε

(f(x0) − f∗)

≤ exp
(

−kε
µ

L

)
(f(x0) − f∗)

kε ≥ κ log f(x0) − f∗

ε
= O

(
κ log 1

ε

)
Question: Can we do faster, than this using the first-order information? Yes, we can.

Recap v § } 19

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds

Lower bounds v § } 20

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds

convex (non-smooth) smooth (non-convex)1 smooth & convex2 smooth & strongly convex (or PL)

O
(

1√
k

)
O

(1
k2

)
O

(1
k2

)
O

((
1 −

√
µ

L

)k
)

kε ∼ O
(1

ε2

)
kε ∼ O

(
1√
ε

)
kε ∼ O

(
1√
ε

)
kε ∼ O

(√
κ log 1

ε

)

1Carmon, Duchi, Hinder, Sidford, 2017
2Nemirovski, Yudin, 1979

Lower bounds v § } 21

https://arxiv.org/pdf/1710.11606.pdf
https://fmin.xyz/assets/files/nemyud1979.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds
The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(2)

ñ Non-smooth convex case

There exists a function f that is M -Lipschitz and
convex such that any first-order method of the
form 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ M∥x0 − x∗∥2

2(1 +
√

k)

ñ Smooth and convex case

There exists a function f that is L-smooth and con-
vex such that any first-order method of the form 2
satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

Lower bounds v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds
The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(2)

ñ Non-smooth convex case

There exists a function f that is M -Lipschitz and
convex such that any first-order method of the
form 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ M∥x0 − x∗∥2

2(1 +
√

k)

ñ Smooth and convex case

There exists a function f that is L-smooth and con-
vex such that any first-order method of the form 2
satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

Lower bounds v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds
The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(2)

ñ Non-smooth convex case

There exists a function f that is M -Lipschitz and
convex such that any first-order method of the
form 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ M∥x0 − x∗∥2

2(1 +
√

k)

ñ Smooth and convex case

There exists a function f that is L-smooth and con-
vex such that any first-order method of the form 2
satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

Lower bounds v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds
The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(2)

ñ Non-smooth convex case

There exists a function f that is M -Lipschitz and
convex such that any first-order method of the
form 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ M∥x0 − x∗∥2

2(1 +
√

k)

ñ Smooth and convex case

There exists a function f that is L-smooth and con-
vex such that any first-order method of the form 2
satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

Lower bounds v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Strongly convex quadratic problem

Strongly convex quadratic problem v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Oscillations and acceleration

4 2 0 2 4

4

2

0

2

4

Gradient Descent

4 2 0 2 4

4

2

0

2

4

Heavy Ball

Strongly convex quadratic problem v § } 24

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/GD.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball

Heavy ball v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Polyak Heavy ball method

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent with step 3.5e-01
Start Point
Optimal Point

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Heavy Ball with 3.5e-01 and 3.0e-01
Start Point
Optimal Point

Let’s introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
momentum update is

xk+1 = xk − α∇f(xk) + β(xk − xk−1).

optimal hyperparameters for strongly convex quadratics:

α∗, β∗ = arg min
α,β

max
λ∈[µ,L]

ρ(M) α∗ = 4
(
√

L + √
µ)2

; β∗ =
(√

L − √
µ

√
L + √

µ

)2

.

Heavy ball v § } 26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy Ball quadratics convergence

ñ Theorem

Assume that f is quadratic µ-strongly convex L-smooth quadratics, then Heavy Ball method with parameters

xα = 4
(
√

L + √
µ)2

, β =
√

L − √
µ

√
L + √

µ

converges linearly:

∥xk − x∗∥2 ≤
(√

κ − 1√
κ + 1

)
∥x0 − x∗∥

Heavy ball v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy Ball Global Convergence 3

ñ Theorem

Assume that f is smooth and convex and that

β ∈ [0, 1), α ∈
(

0,
2(1 − β)

L

)
.

Then, the sequence {xk} generated by Heavy-ball iteration satisfies

f(xT) − f⋆ ≤


∥x0−x⋆∥2

2(T +1)

(
Lβ

1−β
+ 1−β

α

)
, if α ∈

(
0,

1 − β

L

]
,

∥x0−x⋆∥2

2(T +1)(2(1−β)−αL)

(
Lβ + (1−β)2

α

)
, if α ∈

[1 − β

L
,

2(1 − β)
L

)
,

where xT is the Cesaro average of the iterates, i.e.,

xT = 1
T + 1

T∑
k=0

xk.

3Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.
Heavy ball v § } 28

https://arxiv.org/abs/1412.7457
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy Ball Global Convergence 4

ñ Theorem

Assume that f is smooth and strongly convex and that

α ∈ (0,
2
L

), 0 ≤ β <
1
2

(
µα

2 +

√
µ2α2

4 + 4(1 − αL

2)
)

.

where α0 ∈ (0, 1/L]. Then, the sequence {xk} generated by Heavy-ball iteration converges linearly to a
unique optimizer x⋆. In particular,

f(xk) − f⋆ ≤ qk(f(x0) − f⋆),

where q ∈ [0, 1).

4Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.
Heavy ball v § } 29

https://arxiv.org/abs/1412.7457
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems

• Local accelerated convergence was proved in the original paper.
• Recently was proved, that there is no global accelerated convergence for the method.
• Method was not extremely popular until the ML boom
• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex

problems (neural network training)

Heavy ball v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems
• Local accelerated convergence was proved in the original paper.

• Recently was proved, that there is no global accelerated convergence for the method.
• Method was not extremely popular until the ML boom
• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex

problems (neural network training)

Heavy ball v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems
• Local accelerated convergence was proved in the original paper.
• Recently was proved, that there is no global accelerated convergence for the method.

• Method was not extremely popular until the ML boom
• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex

problems (neural network training)

Heavy ball v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems
• Local accelerated convergence was proved in the original paper.
• Recently was proved, that there is no global accelerated convergence for the method.
• Method was not extremely popular until the ML boom

• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex
problems (neural network training)

Heavy ball v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems
• Local accelerated convergence was proved in the original paper.
• Recently was proved, that there is no global accelerated convergence for the method.
• Method was not extremely popular until the ML boom
• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex

problems (neural network training)

Heavy ball v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Nesterov accelerated gradient

Nesterov accelerated gradient v § } 31

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

The concept of Nesterov Accelerated Gradient method

xk+1 = xk − α∇f(xk) xk+1 = xk − α∇f(xk) + β(xk − xk−1)

{
yk+1 = xk + β(xk − xk−1)
xk+1 = yk+1 − α∇f(yk+1)

Let’s define the following notation

x+ = x − α∇f(x) Gradient step
dk = βk(xk − xk−1) Momentum term

Then we can write down:

xk+1 = x+
k Gradient Descent

xk+1 = x+
k + dk Heavy Ball

xk+1 = (xk + dk)+ Nesterov accelerated gradient

Nesterov accelerated gradient v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

The concept of Nesterov Accelerated Gradient method

xk+1 = xk − α∇f(xk) xk+1 = xk − α∇f(xk) + β(xk − xk−1)

{
yk+1 = xk + β(xk − xk−1)
xk+1 = yk+1 − α∇f(yk+1)

Let’s define the following notation

x+ = x − α∇f(x) Gradient step
dk = βk(xk − xk−1) Momentum term

Then we can write down:

xk+1 = x+
k Gradient Descent

xk+1 = x+
k + dk Heavy Ball

xk+1 = (xk + dk)+ Nesterov accelerated gradient

Nesterov accelerated gradient v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

NAG convergence for quadratics

Nesterov accelerated gradient v § } 33

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

General case convergence

ñ Theorem

Let f : Rn → R is convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG) algorithm is
designed to solve the minimization problem starting with an initial point x0 = y0 ∈ Rn and λ0 = 0. The
algorithm iterates the following steps:

Gradient update: yk+1 = xk − 1
L

∇f(xk)

Extrapolation: xk+1 = (1 − γk)yk+1 + γkyk

Extrapolation weight: λk+1 =
1 +

√
1 + 4λ2

k

2

Extrapolation weight: γk = 1 − λk

λk+1

The sequences {f(yk)}k∈N produced by the algorithm will converge to the optimal value f∗ at the rate of
O

(
1

k2

)
, specifically:

f(yk) − f∗ ≤ 2L∥x0 − x∗∥2

k2

Nesterov accelerated gradient v § } 34

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

General case convergence

ñ Theorem

Let f : Rn → R is µ-strongly convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG)
algorithm is designed to solve the minimization problem starting with an initial point x0 = y0 ∈ Rn and
λ0 = 0. The algorithm iterates the following steps:

Gradient update: yk+1 = xk − 1
L

∇f(xk)

Extrapolation: xk+1 = (1 − γk)yk+1 + γkyk

Extrapolation weight: γk =
√

L − √
µ

√
L + √

µ

The sequences {f(yk)}k∈N produced by the algorithm will converge to the optimal value f∗ linearly:

f(yk) − f∗ ≤ µ + L

2 ∥x0 − x∗∥2
2 exp

(
− k√

κ

)

Nesterov accelerated gradient v § } 35

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Non-smooth problems

Non-smooth problems v § } 36

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

ℓ1-regularized linear least squares

Non-smooth problems v § } 37

https://fmin.xyz/assets/Notebooks/Regularization_horizontal.mp4
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Norms are not smooth

min
x∈Rn

f(x),

A classical convex optimization problem is considered. We assume that f(x) is a convex function, but now we do
not require smoothness.

x

1.0
0.5

0.0
0.5

1.0

y

1.0
0.5

0.0
0.5

1.0

t

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

p = 1 Norm Cone

x

1.0
0.5

0.0
0.5

1.0

y

1.0
0.5

0.0
0.5

1.0

t

0.2
0.4
0.6
0.8
1.0
1.2
1.4

p = 2 Norm Cone

x

1.0
0.5

0.0
0.5

1.0

y

1.0
0.5

0.0
0.5

1.0

t

0.2
0.4
0.6

0.8

1.0

p = Norm Cone

Figure 6: Norm cones for different p - norms are non-smooth

Non-smooth problems v § } 38

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Wolfe’s example

x1

2
0

2
x 2

2
0

2

-27.00
-15.72
-4.43
6.85
18.13
29.42
40.70
51.98
63.27
74.55

2 0 2
x1

3

2

1

0

1

2

x 2

-15.0 0.0

15.0
30.0

45.0

45.0

60.0

60.0

20

0

20

40

60

Wolfe's example

Figure 7: Wolfe’s example. 3Open in Colab

Non-smooth problems v § } 39

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/subgrad.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Subgradient calculus

Subgradient calculus v § } 40

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convex function linear lower bound

Figure 8: Taylor linear approximation serves as a global lower bound for a
convex function

An important property of a continuous convex
function f(x) is that at any chosen point x0
for all x ∈ dom f the inequality holds:

f(x) ≥ f(x0) + ⟨g, x − x0⟩

for some vector g, i.e., the tangent to the
graph of the function is the global estimate
from below for the function.

• If f(x) is differentiable, then g = ∇f(x0)
• Not all continuous convex functions are

differentiable.

We wouldn’t want to lose such a nice property.

Subgradient calculus v § } 41

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convex function linear lower bound

Figure 8: Taylor linear approximation serves as a global lower bound for a
convex function

An important property of a continuous convex
function f(x) is that at any chosen point x0
for all x ∈ dom f the inequality holds:

f(x) ≥ f(x0) + ⟨g, x − x0⟩

for some vector g, i.e., the tangent to the
graph of the function is the global estimate
from below for the function.

• If f(x) is differentiable, then g = ∇f(x0)

• Not all continuous convex functions are
differentiable.

We wouldn’t want to lose such a nice property.

Subgradient calculus v § } 41

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convex function linear lower bound

Figure 8: Taylor linear approximation serves as a global lower bound for a
convex function

An important property of a continuous convex
function f(x) is that at any chosen point x0
for all x ∈ dom f the inequality holds:

f(x) ≥ f(x0) + ⟨g, x − x0⟩

for some vector g, i.e., the tangent to the
graph of the function is the global estimate
from below for the function.

• If f(x) is differentiable, then g = ∇f(x0)
• Not all continuous convex functions are

differentiable.

We wouldn’t want to lose such a nice property.

Subgradient calculus v § } 41

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convex function linear lower bound

Figure 8: Taylor linear approximation serves as a global lower bound for a
convex function

An important property of a continuous convex
function f(x) is that at any chosen point x0
for all x ∈ dom f the inequality holds:

f(x) ≥ f(x0) + ⟨g, x − x0⟩

for some vector g, i.e., the tangent to the
graph of the function is the global estimate
from below for the function.

• If f(x) is differentiable, then g = ∇f(x0)
• Not all continuous convex functions are

differentiable.

We wouldn’t want to lose such a nice property.

Subgradient calculus v § } 41

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convex function linear lower bound

Figure 8: Taylor linear approximation serves as a global lower bound for a
convex function

An important property of a continuous convex
function f(x) is that at any chosen point x0
for all x ∈ dom f the inequality holds:

f(x) ≥ f(x0) + ⟨g, x − x0⟩

for some vector g, i.e., the tangent to the
graph of the function is the global estimate
from below for the function.

• If f(x) is differentiable, then g = ∇f(x0)
• Not all continuous convex functions are

differentiable.
We wouldn’t want to lose such a nice property.

Subgradient calculus v § } 41

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Subgradient and subdifferential
A vector g is called the subgradient of a function f(x) : S → R at a point x0 if ∀x ∈ S:

f(x) ≥ f(x0) + ⟨g, x − x0⟩

The set of all subgradients of a function f(x) at a point x0 is called the subdifferential of f at x0 and is denoted by
∂f(x0).

Figure 9: Subdifferential is a set of all possible subgradients

Subgradient calculus v § } 42

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Subgradient and subdifferential
A vector g is called the subgradient of a function f(x) : S → R at a point x0 if ∀x ∈ S:

f(x) ≥ f(x0) + ⟨g, x − x0⟩

The set of all subgradients of a function f(x) at a point x0 is called the subdifferential of f at x0 and is denoted by
∂f(x0).

Figure 9: Subdifferential is a set of all possible subgradients

Subgradient calculus v § } 42

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Subgradient and subdifferential
A vector g is called the subgradient of a function f(x) : S → R at a point x0 if ∀x ∈ S:

f(x) ≥ f(x0) + ⟨g, x − x0⟩

The set of all subgradients of a function f(x) at a point x0 is called the subdifferential of f at x0 and is denoted by
∂f(x0).

Figure 9: Subdifferential is a set of all possible subgradients
Subgradient calculus v § } 42

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Subgradient and subdifferential
Find ∂f(x), if f(x) = |x|

Figure 10: Subdifferential of |x|

Subgradient calculus v § } 43

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Subgradient and subdifferential
Find ∂f(x), if f(x) = |x|

Figure 10: Subdifferential of |x|
Subgradient calculus v § } 43

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Subgradient Method

Subgradient Method v § } 44

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Algorithm

A vector g is called the subgradient of the function f(x) : S → R at the point x0 if ∀x ∈ S:

f(x) ≥ f(x0) + ⟨g, x − x0⟩

The idea is very simple: let’s replace the gradient ∇f(xk) in the gradient descent algorithm with a subgradient gk at
point xk:

xk+1 = xk − αkgk,

where gk is an arbitrary subgradient of the function f(x) at the point xk, gk ∈ ∂f(xk)

Subgradient Method v § } 45

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Algorithm

A vector g is called the subgradient of the function f(x) : S → R at the point x0 if ∀x ∈ S:

f(x) ≥ f(x0) + ⟨g, x − x0⟩

The idea is very simple: let’s replace the gradient ∇f(xk) in the gradient descent algorithm with a subgradient gk at
point xk:

xk+1 = xk − αkgk,

where gk is an arbitrary subgradient of the function f(x) at the point xk, gk ∈ ∂f(xk)

Subgradient Method v § } 45

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence results

ñ Theorem

Let f be a convex G-Lipschitz function. For a fixed step size α = ∥x0 − x∗∥2

G

√
1
K

, subgradient method

satisfies

f(x) − f∗ ≤ G∥x0 − x∗∥2√
K

x = 1
K

K−1∑
k=0

xi

• O
(

1√
T

)
is slow, but already hits the lower bound (O

(
1
T

)
in the strongly convex case).

• Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several
diminishes strategies).

• There is no monotonic decrease of objective.
• Convergence is slower, than for the gradient descent (smooth case). However, if we will go deeply for the

problem structure, we can improve convergence (proximal gradient method).

Subgradient Method v § } 46

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence results

ñ Theorem

Let f be a convex G-Lipschitz function. For a fixed step size α = ∥x0 − x∗∥2

G

√
1
K

, subgradient method

satisfies

f(x) − f∗ ≤ G∥x0 − x∗∥2√
K

x = 1
K

K−1∑
k=0

xi

• O
(

1√
T

)
is slow, but already hits the lower bound (O

(
1
T

)
in the strongly convex case).

• Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several
diminishes strategies).

• There is no monotonic decrease of objective.
• Convergence is slower, than for the gradient descent (smooth case). However, if we will go deeply for the

problem structure, we can improve convergence (proximal gradient method).

Subgradient Method v § } 46

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence results

ñ Theorem

Let f be a convex G-Lipschitz function. For a fixed step size α = ∥x0 − x∗∥2

G

√
1
K

, subgradient method

satisfies

f(x) − f∗ ≤ G∥x0 − x∗∥2√
K

x = 1
K

K−1∑
k=0

xi

• O
(

1√
T

)
is slow, but already hits the lower bound (O

(
1
T

)
in the strongly convex case).

• Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several
diminishes strategies).

• There is no monotonic decrease of objective.

• Convergence is slower, than for the gradient descent (smooth case). However, if we will go deeply for the
problem structure, we can improve convergence (proximal gradient method).

Subgradient Method v § } 46

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence results

ñ Theorem

Let f be a convex G-Lipschitz function. For a fixed step size α = ∥x0 − x∗∥2

G

√
1
K

, subgradient method

satisfies

f(x) − f∗ ≤ G∥x0 − x∗∥2√
K

x = 1
K

K−1∑
k=0

xi

• O
(

1√
T

)
is slow, but already hits the lower bound (O

(
1
T

)
in the strongly convex case).

• Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several
diminishes strategies).

• There is no monotonic decrease of objective.
• Convergence is slower, than for the gradient descent (smooth case). However, if we will go deeply for the

problem structure, we can improve convergence (proximal gradient method).

Subgradient Method v § } 46

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence results

ñ Theorem

Let f be a convex G-Lipschitz function and fbest
k = min

i=1,...,k
f(xi). For a fixed step size α, subgradient method

satisfies
lim

k→∞
fbest

k ≤ f∗ + G2α

2

ñ Theorem

Let f be a convex G-Lipschitz function and fbest
k = min

i=1,...,k
f(xi). For a diminishing step size αk (square

summable but not summable. Important here that step sizes go to zero, but not too fast), subgradient method
satisfies

lim
k→∞

fbest
k ≤ f∗

Subgradient Method v § } 47

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Applications

Applications v § } 48

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Linear Least Squares with l1-regularization

min
x∈Rn

1
2∥Ax − b∥2

2 + λ∥x∥1

Algorithm will be written as:

xk+1 = xk − αk

(
A⊤(Axk − b) + λsign(xk)

)
where signum function is taken element-wise.

0 100 200 300 400 500
iteration

10 13

10 10

10 7

10 4

10 1

102

Ga
p

to
 a

pp
ro

x.
 o

pt
im

al
 f(

x k
)

f(x
*)

0 100 200 300 400 500
iteration

10 13

10 10

10 7

10 4

10 1

102

g(
x k

)

LLS with l1 regularization. 2 runs. = 1

Figure 11: Illustration 3Open in Colab
Applications v § } 49

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/SD.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Regularized logistic regression

Given (xi, yi) ∈ Rp × {0, 1} for i = 1, . . . , n, the logistic regression function is defined as:

f(θ) =
n∑

i=1

(
−yix

T
i θ + log(1 + exp(xT

i θ))
)

This is a smooth and convex function with its gradient given by:

∇f(θ) =
n∑

i=1

(yi − si(θ)) xi

where si(θ) = exp(xT
i θ)

1+exp(xT
i

θ) , for i = 1, . . . , n. Consider the regularized problem:

f(θ) + λr(θ) → min
θ

where r(θ) = ∥θ∥2
2 for the ridge penalty, or r(θ) = ∥θ∥1 for the lasso penalty.

Applications v § } 50

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Support Vector Machines

Let D = {(xi, yi) | xi ∈ Rn, yi ∈ {±1}}

We need to find θ ∈ Rn and b ∈ R such that

min
θ∈Rn,b∈R

1
2∥θ∥2

2 + C

m∑
i=1

max[0, 1 − yi(θ⊤xi + b)]

Applications v § } 51

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Subgradient method

Subgradient Method: min
x∈Rn

f(x) xk+1 = xk − αkgk, gk ∈ ∂f(xk)

convex (non-smooth) strongly convex (non-smooth)

f(xk) − f∗ ∼ O
(

1√
k

)
f(xk) − f∗ ∼ O

(1
k

)
kε ∼ O

(1
ε2

)
kε ∼ O

(1
ε

)

ñ Theorem

Assume that f is G-Lipschitz and convex, then
Subgradient method converges as:

f(x) − f∗ ≤ GR√
k

,

where

• α = R

G
√

k
• R = ∥x0 − x∗∥

• x = 1
k

k−1∑
i=0

xi

Applications v § } 52

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Subgradient method

Subgradient Method: min
x∈Rn

f(x) xk+1 = xk − αkgk, gk ∈ ∂f(xk)

convex (non-smooth) strongly convex (non-smooth)

f(xk) − f∗ ∼ O
(

1√
k

)
f(xk) − f∗ ∼ O

(1
k

)
kε ∼ O

(1
ε2

)
kε ∼ O

(1
ε

)

ñ Theorem

Assume that f is G-Lipschitz and convex, then
Subgradient method converges as:

f(x) − f∗ ≤ GR√
k

,

where

• α = R

G
√

k
• R = ∥x0 − x∗∥

• x = 1
k

k−1∑
i=0

xi

Applications v § } 52

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Subgradient method

Subgradient Method: min
x∈Rn

f(x) xk+1 = xk − αkgk, gk ∈ ∂f(xk)

convex (non-smooth) strongly convex (non-smooth)

f(xk) − f∗ ∼ O
(

1√
k

)
f(xk) − f∗ ∼ O

(1
k

)
kε ∼ O

(1
ε2

)
kε ∼ O

(1
ε

)

ñ Theorem

Assume that f is G-Lipschitz and convex, then
Subgradient method converges as:

f(x) − f∗ ≤ GR√
k

,

where
• α = R

G
√

k

• R = ∥x0 − x∗∥

• x = 1
k

k−1∑
i=0

xi

Applications v § } 52

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Subgradient method

Subgradient Method: min
x∈Rn

f(x) xk+1 = xk − αkgk, gk ∈ ∂f(xk)

convex (non-smooth) strongly convex (non-smooth)

f(xk) − f∗ ∼ O
(

1√
k

)
f(xk) − f∗ ∼ O

(1
k

)
kε ∼ O

(1
ε2

)
kε ∼ O

(1
ε

)

ñ Theorem

Assume that f is G-Lipschitz and convex, then
Subgradient method converges as:

f(x) − f∗ ≤ GR√
k

,

where
• α = R

G
√

k
• R = ∥x0 − x∗∥

• x = 1
k

k−1∑
i=0

xi

Applications v § } 52

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Subgradient method

Subgradient Method: min
x∈Rn

f(x) xk+1 = xk − αkgk, gk ∈ ∂f(xk)

convex (non-smooth) strongly convex (non-smooth)

f(xk) − f∗ ∼ O
(

1√
k

)
f(xk) − f∗ ∼ O

(1
k

)
kε ∼ O

(1
ε2

)
kε ∼ O

(1
ε

)

ñ Theorem

Assume that f is G-Lipschitz and convex, then
Subgradient method converges as:

f(x) − f∗ ≤ GR√
k

,

where
• α = R

G
√

k
• R = ∥x0 − x∗∥

• x = 1
k

k−1∑
i=0

xi

Applications v § } 52

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Non-smooth convex optimization lower bounds

convex (non-smooth) strongly convex (non-smooth)

f(xk) − f∗ ∼ O
(

1√
k

)
f(xk) − f∗ ∼ O

(1
k

)
kε ∼ O

(1
ε2

)
kε ∼ O

(1
ε

)

• Subgradient method is optimal for the problems above.
• One can use Mirror Descent (a generalization of the subgradient method to a possiby non-Euclidian distance)

with the same convergence rate to better fit the geometry of the problem.
• However, we can achieve standard gradient descent rate O

(
1
k

)
(and even accelerated version O

(
1

k2

)
) if we

will exploit the structure of the problem.

Applications v § } 53

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Non-smooth convex optimization lower bounds

convex (non-smooth) strongly convex (non-smooth)

f(xk) − f∗ ∼ O
(

1√
k

)
f(xk) − f∗ ∼ O

(1
k

)
kε ∼ O

(1
ε2

)
kε ∼ O

(1
ε

)

• Subgradient method is optimal for the problems above.

• One can use Mirror Descent (a generalization of the subgradient method to a possiby non-Euclidian distance)
with the same convergence rate to better fit the geometry of the problem.

• However, we can achieve standard gradient descent rate O
(

1
k

)
(and even accelerated version O

(
1

k2

)
) if we

will exploit the structure of the problem.

Applications v § } 53

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Non-smooth convex optimization lower bounds

convex (non-smooth) strongly convex (non-smooth)

f(xk) − f∗ ∼ O
(

1√
k

)
f(xk) − f∗ ∼ O

(1
k

)
kε ∼ O

(1
ε2

)
kε ∼ O

(1
ε

)

• Subgradient method is optimal for the problems above.
• One can use Mirror Descent (a generalization of the subgradient method to a possiby non-Euclidian distance)

with the same convergence rate to better fit the geometry of the problem.

• However, we can achieve standard gradient descent rate O
(

1
k

)
(and even accelerated version O

(
1

k2

)
) if we

will exploit the structure of the problem.

Applications v § } 53

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Non-smooth convex optimization lower bounds

convex (non-smooth) strongly convex (non-smooth)

f(xk) − f∗ ∼ O
(

1√
k

)
f(xk) − f∗ ∼ O

(1
k

)
kε ∼ O

(1
ε2

)
kε ∼ O

(1
ε

)

• Subgradient method is optimal for the problems above.
• One can use Mirror Descent (a generalization of the subgradient method to a possiby non-Euclidian distance)

with the same convergence rate to better fit the geometry of the problem.
• However, we can achieve standard gradient descent rate O

(
1
k

)
(and even accelerated version O

(
1

k2

)
) if we

will exploit the structure of the problem.

Applications v § } 53

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal operator

Proximal operator v § } 54

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Consider Gradient Flow ODE:

dx

dt
= −∇f(x)

Explicit Euler discretization:

xk+1 − xk

α
= −∇f(xk)

Leads to ordinary Gradient Descent method

Implicit Euler discretization:

xk+1 − xk

α
= −∇f(xk+1)

xk+1 − xk

α
+ ∇f(xk+1) = 0

x − xk

α
+ ∇f(x)

∣∣∣
x=xk+1

= 0

∇
[1

2α
∥x − xk∥2

2 + f(x)
]∣∣∣

x=xk+1

= 0

xk+1 = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]

, Proximal operator

proxf,α(xk) = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]

Proximal operator v § } 55

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Consider Gradient Flow ODE:

dx

dt
= −∇f(x)

Explicit Euler discretization:

xk+1 − xk

α
= −∇f(xk)

Leads to ordinary Gradient Descent method

Implicit Euler discretization:

xk+1 − xk

α
= −∇f(xk+1)

xk+1 − xk

α
+ ∇f(xk+1) = 0

x − xk

α
+ ∇f(x)

∣∣∣
x=xk+1

= 0

∇
[1

2α
∥x − xk∥2

2 + f(x)
]∣∣∣

x=xk+1

= 0

xk+1 = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]

, Proximal operator

proxf,α(xk) = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]

Proximal operator v § } 55

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Consider Gradient Flow ODE:

dx

dt
= −∇f(x)

Explicit Euler discretization:

xk+1 − xk

α
= −∇f(xk)

Leads to ordinary Gradient Descent method

Implicit Euler discretization:

xk+1 − xk

α
= −∇f(xk+1)

xk+1 − xk

α
+ ∇f(xk+1) = 0

x − xk

α
+ ∇f(x)

∣∣∣
x=xk+1

= 0

∇
[1

2α
∥x − xk∥2

2 + f(x)
]∣∣∣

x=xk+1

= 0

xk+1 = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]
, Proximal operator

proxf,α(xk) = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]

Proximal operator v § } 55

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Consider Gradient Flow ODE:

dx

dt
= −∇f(x)

Explicit Euler discretization:

xk+1 − xk

α
= −∇f(xk)

Leads to ordinary Gradient Descent method

Implicit Euler discretization:

xk+1 − xk

α
= −∇f(xk+1)

xk+1 − xk

α
+ ∇f(xk+1) = 0

x − xk

α
+ ∇f(x)

∣∣∣
x=xk+1

= 0

∇
[1

2α
∥x − xk∥2

2 + f(x)
]∣∣∣

x=xk+1

= 0

xk+1 = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]
, Proximal operator

proxf,α(xk) = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]

Proximal operator v § } 55

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Consider Gradient Flow ODE:

dx

dt
= −∇f(x)

Explicit Euler discretization:

xk+1 − xk

α
= −∇f(xk)

Leads to ordinary Gradient Descent method

Implicit Euler discretization:

xk+1 − xk

α
= −∇f(xk+1)

xk+1 − xk

α
+ ∇f(xk+1) = 0

x − xk

α
+ ∇f(x)

∣∣∣
x=xk+1

= 0

∇
[1

2α
∥x − xk∥2

2 + f(x)
]∣∣∣

x=xk+1

= 0

xk+1 = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]
, Proximal operator

proxf,α(xk) = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]

Proximal operator v § } 55

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Consider Gradient Flow ODE:

dx

dt
= −∇f(x)

Explicit Euler discretization:

xk+1 − xk

α
= −∇f(xk)

Leads to ordinary Gradient Descent method

Implicit Euler discretization:

xk+1 − xk

α
= −∇f(xk+1)

xk+1 − xk

α
+ ∇f(xk+1) = 0

x − xk

α
+ ∇f(x)

∣∣∣
x=xk+1

= 0

∇
[1

2α
∥x − xk∥2

2 + f(x)
]∣∣∣

x=xk+1

= 0

xk+1 = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]
, Proximal operator

proxf,α(xk) = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]

Proximal operator v § } 55

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Consider Gradient Flow ODE:

dx

dt
= −∇f(x)

Explicit Euler discretization:

xk+1 − xk

α
= −∇f(xk)

Leads to ordinary Gradient Descent method

Implicit Euler discretization:

xk+1 − xk

α
= −∇f(xk+1)

xk+1 − xk

α
+ ∇f(xk+1) = 0

x − xk

α
+ ∇f(x)

∣∣∣
x=xk+1

= 0

∇
[1

2α
∥x − xk∥2

2 + f(x)
]∣∣∣

x=xk+1

= 0

xk+1 = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]

, Proximal operator

proxf,α(xk) = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]

Proximal operator v § } 55

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Consider Gradient Flow ODE:

dx

dt
= −∇f(x)

Explicit Euler discretization:

xk+1 − xk

α
= −∇f(xk)

Leads to ordinary Gradient Descent method

Implicit Euler discretization:

xk+1 − xk

α
= −∇f(xk+1)

xk+1 − xk

α
+ ∇f(xk+1) = 0

x − xk

α
+ ∇f(x)

∣∣∣
x=xk+1

= 0

∇
[1

2α
∥x − xk∥2

2 + f(x)
]∣∣∣

x=xk+1

= 0

xk+1 = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]

, Proximal operator

proxf,α(xk) = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]

Proximal operator v § } 55

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Consider Gradient Flow ODE:

dx

dt
= −∇f(x)

Explicit Euler discretization:

xk+1 − xk

α
= −∇f(xk)

Leads to ordinary Gradient Descent method

Implicit Euler discretization:

xk+1 − xk

α
= −∇f(xk+1)

xk+1 − xk

α
+ ∇f(xk+1) = 0

x − xk

α
+ ∇f(x)

∣∣∣
x=xk+1

= 0

∇
[1

2α
∥x − xk∥2

2 + f(x)
]∣∣∣

x=xk+1

= 0

xk+1 = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]
, Proximal operator

proxf,α(xk) = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]
Proximal operator v § } 55

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal operator visualization

Figure 12: SourceProximal operator v § } 56

https://twitter.com/gabrielpeyre/status/1273842947704999936
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
• GD from proximal method. Back to the discretization:

xk+1 + α∇f(xk+1) = xk

(I + α∇f)(xk+1) = xk

xk+1 = (I + α∇f)−1xk

α→0
≈ (I − α∇f)xk

Thus, we have a usual gradient descent with α → 0: xk+1 = xk − α∇f(xk)

• Newton from proximal method. Now let’s consider proximal mapping of a second order Taylor approximation
of the function fII

xk
(x):

xk+1 = proxfII
xk

,α(xk) = arg min
x∈Rn

[
f(xk) + ⟨∇f(xk), x − xk⟩ + 1

2 ⟨∇2f(xk)(x − xk), x − xk⟩ + 1
2α

∥x − xk∥2
2

]
∇f(xk) + ∇2f(xk)(x − xk) + 1

α
(x − xk)

∣∣∣
x=xk+1

= 0

xk+1 = xk −
[
∇2f(xk) + 1

α
I
]−1

∇f(xk)

Proximal operator v § } 57

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
• GD from proximal method. Back to the discretization:

xk+1 + α∇f(xk+1) = xk

(I + α∇f)(xk+1) = xk

xk+1 = (I + α∇f)−1xk

α→0
≈ (I − α∇f)xk

Thus, we have a usual gradient descent with α → 0: xk+1 = xk − α∇f(xk)

• Newton from proximal method. Now let’s consider proximal mapping of a second order Taylor approximation
of the function fII

xk
(x):

xk+1 = proxfII
xk

,α(xk) = arg min
x∈Rn

[
f(xk) + ⟨∇f(xk), x − xk⟩ + 1

2 ⟨∇2f(xk)(x − xk), x − xk⟩ + 1
2α

∥x − xk∥2
2

]
∇f(xk) + ∇2f(xk)(x − xk) + 1

α
(x − xk)

∣∣∣
x=xk+1

= 0

xk+1 = xk −
[
∇2f(xk) + 1

α
I
]−1

∇f(xk)

Proximal operator v § } 57

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
• GD from proximal method. Back to the discretization:

xk+1 + α∇f(xk+1) = xk

(I + α∇f)(xk+1) = xk

xk+1 = (I + α∇f)−1xk

α→0
≈ (I − α∇f)xk

Thus, we have a usual gradient descent with α → 0: xk+1 = xk − α∇f(xk)

• Newton from proximal method. Now let’s consider proximal mapping of a second order Taylor approximation
of the function fII

xk
(x):

xk+1 = proxfII
xk

,α(xk) = arg min
x∈Rn

[
f(xk) + ⟨∇f(xk), x − xk⟩ + 1

2 ⟨∇2f(xk)(x − xk), x − xk⟩ + 1
2α

∥x − xk∥2
2

]
∇f(xk) + ∇2f(xk)(x − xk) + 1

α
(x − xk)

∣∣∣
x=xk+1

= 0

xk+1 = xk −
[
∇2f(xk) + 1

α
I
]−1

∇f(xk)

Proximal operator v § } 57

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
• GD from proximal method. Back to the discretization:

xk+1 + α∇f(xk+1) = xk

(I + α∇f)(xk+1) = xk

xk+1 = (I + α∇f)−1xk

α→0
≈ (I − α∇f)xk

Thus, we have a usual gradient descent with α → 0: xk+1 = xk − α∇f(xk)

• Newton from proximal method. Now let’s consider proximal mapping of a second order Taylor approximation
of the function fII

xk
(x):

xk+1 = proxfII
xk

,α(xk) = arg min
x∈Rn

[
f(xk) + ⟨∇f(xk), x − xk⟩ + 1

2 ⟨∇2f(xk)(x − xk), x − xk⟩ + 1
2α

∥x − xk∥2
2

]
∇f(xk) + ∇2f(xk)(x − xk) + 1

α
(x − xk)

∣∣∣
x=xk+1

= 0

xk+1 = xk −
[
∇2f(xk) + 1

α
I
]−1

∇f(xk)

Proximal operator v § } 57

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
• GD from proximal method. Back to the discretization:

xk+1 + α∇f(xk+1) = xk

(I + α∇f)(xk+1) = xk

xk+1 = (I + α∇f)−1xk

α→0
≈ (I − α∇f)xk

Thus, we have a usual gradient descent with α → 0: xk+1 = xk − α∇f(xk)

• Newton from proximal method. Now let’s consider proximal mapping of a second order Taylor approximation
of the function fII

xk
(x):

xk+1 = proxfII
xk

,α(xk) = arg min
x∈Rn

[
f(xk) + ⟨∇f(xk), x − xk⟩ + 1

2 ⟨∇2f(xk)(x − xk), x − xk⟩ + 1
2α

∥x − xk∥2
2

]
∇f(xk) + ∇2f(xk)(x − xk) + 1

α
(x − xk)

∣∣∣
x=xk+1

= 0

xk+1 = xk −
[
∇2f(xk) + 1

α
I
]−1

∇f(xk)

Proximal operator v § } 57

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
• GD from proximal method. Back to the discretization:

xk+1 + α∇f(xk+1) = xk

(I + α∇f)(xk+1) = xk

xk+1 = (I + α∇f)−1xk

α→0
≈ (I − α∇f)xk

Thus, we have a usual gradient descent with α → 0: xk+1 = xk − α∇f(xk)
• Newton from proximal method. Now let’s consider proximal mapping of a second order Taylor approximation

of the function fII
xk

(x):

xk+1 = proxfII
xk

,α(xk) = arg min
x∈Rn

[
f(xk) + ⟨∇f(xk), x − xk⟩ + 1

2 ⟨∇2f(xk)(x − xk), x − xk⟩ + 1
2α

∥x − xk∥2
2

]
∇f(xk) + ∇2f(xk)(x − xk) + 1

α
(x − xk)

∣∣∣
x=xk+1

= 0

xk+1 = xk −
[
∇2f(xk) + 1

α
I
]−1

∇f(xk)

Proximal operator v § } 57

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
• GD from proximal method. Back to the discretization:

xk+1 + α∇f(xk+1) = xk

(I + α∇f)(xk+1) = xk

xk+1 = (I + α∇f)−1xk

α→0
≈ (I − α∇f)xk

Thus, we have a usual gradient descent with α → 0: xk+1 = xk − α∇f(xk)
• Newton from proximal method. Now let’s consider proximal mapping of a second order Taylor approximation

of the function fII
xk

(x):

xk+1 = proxfII
xk

,α(xk) = arg min
x∈Rn

[
f(xk) + ⟨∇f(xk), x − xk⟩ + 1

2 ⟨∇2f(xk)(x − xk), x − xk⟩ + 1
2α

∥x − xk∥2
2

]

∇f(xk) + ∇2f(xk)(x − xk) + 1
α

(x − xk)
∣∣∣
x=xk+1

= 0

xk+1 = xk −
[
∇2f(xk) + 1

α
I
]−1

∇f(xk)

Proximal operator v § } 57

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
• GD from proximal method. Back to the discretization:

xk+1 + α∇f(xk+1) = xk

(I + α∇f)(xk+1) = xk

xk+1 = (I + α∇f)−1xk

α→0
≈ (I − α∇f)xk

Thus, we have a usual gradient descent with α → 0: xk+1 = xk − α∇f(xk)
• Newton from proximal method. Now let’s consider proximal mapping of a second order Taylor approximation

of the function fII
xk

(x):

xk+1 = proxfII
xk

,α(xk) = arg min
x∈Rn

[
f(xk) + ⟨∇f(xk), x − xk⟩ + 1

2 ⟨∇2f(xk)(x − xk), x − xk⟩ + 1
2α

∥x − xk∥2
2

]
∇f(xk) + ∇2f(xk)(x − xk) + 1

α
(x − xk)

∣∣∣
x=xk+1

= 0

xk+1 = xk −
[
∇2f(xk) + 1

α
I
]−1

∇f(xk)

Proximal operator v § } 57

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
• GD from proximal method. Back to the discretization:

xk+1 + α∇f(xk+1) = xk

(I + α∇f)(xk+1) = xk

xk+1 = (I + α∇f)−1xk

α→0
≈ (I − α∇f)xk

Thus, we have a usual gradient descent with α → 0: xk+1 = xk − α∇f(xk)
• Newton from proximal method. Now let’s consider proximal mapping of a second order Taylor approximation

of the function fII
xk

(x):

xk+1 = proxfII
xk

,α(xk) = arg min
x∈Rn

[
f(xk) + ⟨∇f(xk), x − xk⟩ + 1

2 ⟨∇2f(xk)(x − xk), x − xk⟩ + 1
2α

∥x − xk∥2
2

]
∇f(xk) + ∇2f(xk)(x − xk) + 1

α
(x − xk)

∣∣∣
x=xk+1

= 0

xk+1 = xk −
[
∇2f(xk) + 1

α
I
]−1

∇f(xk)

Proximal operator v § } 57

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

From projections to proximity
Let IS be the indicator function for closed, convex S. Recall orthogonal projection πS(y)

πS(y) := arg min
x∈S

1
2∥x − y∥2

2.

With the following notation of indicator function

IS(x) =
{

0, x ∈ S,

∞, x /∈ S,

Rewrite orthogonal projection πS(y) as

πS(y) := arg min
x∈Rn

1
2∥x − y∥2 + IS(x).

Proximity: Replace IS by some convex function!

proxr(y) = proxr,1(y) := arg min 1
2∥x − y∥2 + r(x)

Proximal operator v § } 58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

From projections to proximity
Let IS be the indicator function for closed, convex S. Recall orthogonal projection πS(y)

πS(y) := arg min
x∈S

1
2∥x − y∥2

2.

With the following notation of indicator function

IS(x) =
{

0, x ∈ S,

∞, x /∈ S,

Rewrite orthogonal projection πS(y) as

πS(y) := arg min
x∈Rn

1
2∥x − y∥2 + IS(x).

Proximity: Replace IS by some convex function!

proxr(y) = proxr,1(y) := arg min 1
2∥x − y∥2 + r(x)

Proximal operator v § } 58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

From projections to proximity
Let IS be the indicator function for closed, convex S. Recall orthogonal projection πS(y)

πS(y) := arg min
x∈S

1
2∥x − y∥2

2.

With the following notation of indicator function

IS(x) =
{

0, x ∈ S,

∞, x /∈ S,

Rewrite orthogonal projection πS(y) as

πS(y) := arg min
x∈Rn

1
2∥x − y∥2 + IS(x).

Proximity: Replace IS by some convex function!

proxr(y) = proxr,1(y) := arg min 1
2∥x − y∥2 + r(x)

Proximal operator v § } 58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

From projections to proximity
Let IS be the indicator function for closed, convex S. Recall orthogonal projection πS(y)

πS(y) := arg min
x∈S

1
2∥x − y∥2

2.

With the following notation of indicator function

IS(x) =
{

0, x ∈ S,

∞, x /∈ S,

Rewrite orthogonal projection πS(y) as

πS(y) := arg min
x∈Rn

1
2∥x − y∥2 + IS(x).

Proximity: Replace IS by some convex function!

proxr(y) = proxr,1(y) := arg min 1
2∥x − y∥2 + r(x)

Proximal operator v § } 58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

From projections to proximity
Let IS be the indicator function for closed, convex S. Recall orthogonal projection πS(y)

πS(y) := arg min
x∈S

1
2∥x − y∥2

2.

With the following notation of indicator function

IS(x) =
{

0, x ∈ S,

∞, x /∈ S,

Rewrite orthogonal projection πS(y) as

πS(y) := arg min
x∈Rn

1
2∥x − y∥2 + IS(x).

Proximity: Replace IS by some convex function!

proxr(y) = proxr,1(y) := arg min 1
2∥x − y∥2 + r(x)

Proximal operator v § } 58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Composite optimization

Composite optimization v § } 59

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Regularized / Composite Objectives

Many nonsmooth problems take the form

min
x∈Rn

φ(x) = f(x) + r(x)

• Lasso, L1-LS, compressed sensing

f(x) = 1
2∥Ax − b∥2

2, r(x) = λ∥x∥1

• L1-Logistic regression, sparse LR

f(x) = −y log h(x)−(1−y) log(1−h(x)), r(x) = λ∥x∥1

Composite optimization v § } 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Regularized / Composite Objectives

Many nonsmooth problems take the form

min
x∈Rn

φ(x) = f(x) + r(x)

• Lasso, L1-LS, compressed sensing

f(x) = 1
2∥Ax − b∥2

2, r(x) = λ∥x∥1

• L1-Logistic regression, sparse LR

f(x) = −y log h(x)−(1−y) log(1−h(x)), r(x) = λ∥x∥1

Composite optimization v § } 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Optimality conditions:

0 ∈ ∇f(x∗) + ∂r(x∗)

0 ∈ α∇f(x∗) + α∂r(x∗)
x∗ ∈ α∇f(x∗) + (I + α∂r)(x∗)

x∗ − α∇f(x∗) ∈ (I + α∂r)(x∗)
x∗ = (I + α∂r)−1(x∗ − α∇f(x∗))
x∗ = proxr,α(x∗ − α∇f(x∗))

Which leads to the proximal gradient method:

xk+1 = proxr,α(xk − α∇f(xk))

And this method converges at a rate of O(1
k

)!

ñ Another form of proximal operator

proxf,α(xk) = proxαf (xk) = arg min
x∈Rn

[
αf(x) + 1

2∥x − xk∥2
2

]
proxf (xk) = arg min

x∈Rn

[
f(x) + 1

2∥x − xk∥2
2

]

Composite optimization v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Optimality conditions:

0 ∈ ∇f(x∗) + ∂r(x∗)
0 ∈ α∇f(x∗) + α∂r(x∗)

x∗ ∈ α∇f(x∗) + (I + α∂r)(x∗)
x∗ − α∇f(x∗) ∈ (I + α∂r)(x∗)

x∗ = (I + α∂r)−1(x∗ − α∇f(x∗))
x∗ = proxr,α(x∗ − α∇f(x∗))

Which leads to the proximal gradient method:

xk+1 = proxr,α(xk − α∇f(xk))

And this method converges at a rate of O(1
k

)!

ñ Another form of proximal operator

proxf,α(xk) = proxαf (xk) = arg min
x∈Rn

[
αf(x) + 1

2∥x − xk∥2
2

]
proxf (xk) = arg min

x∈Rn

[
f(x) + 1

2∥x − xk∥2
2

]

Composite optimization v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Optimality conditions:

0 ∈ ∇f(x∗) + ∂r(x∗)
0 ∈ α∇f(x∗) + α∂r(x∗)

x∗ ∈ α∇f(x∗) + (I + α∂r)(x∗)

x∗ − α∇f(x∗) ∈ (I + α∂r)(x∗)
x∗ = (I + α∂r)−1(x∗ − α∇f(x∗))
x∗ = proxr,α(x∗ − α∇f(x∗))

Which leads to the proximal gradient method:

xk+1 = proxr,α(xk − α∇f(xk))

And this method converges at a rate of O(1
k

)!

ñ Another form of proximal operator

proxf,α(xk) = proxαf (xk) = arg min
x∈Rn

[
αf(x) + 1

2∥x − xk∥2
2

]
proxf (xk) = arg min

x∈Rn

[
f(x) + 1

2∥x − xk∥2
2

]

Composite optimization v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Optimality conditions:

0 ∈ ∇f(x∗) + ∂r(x∗)
0 ∈ α∇f(x∗) + α∂r(x∗)

x∗ ∈ α∇f(x∗) + (I + α∂r)(x∗)
x∗ − α∇f(x∗) ∈ (I + α∂r)(x∗)

x∗ = (I + α∂r)−1(x∗ − α∇f(x∗))
x∗ = proxr,α(x∗ − α∇f(x∗))

Which leads to the proximal gradient method:

xk+1 = proxr,α(xk − α∇f(xk))

And this method converges at a rate of O(1
k

)!

ñ Another form of proximal operator

proxf,α(xk) = proxαf (xk) = arg min
x∈Rn

[
αf(x) + 1

2∥x − xk∥2
2

]
proxf (xk) = arg min

x∈Rn

[
f(x) + 1

2∥x − xk∥2
2

]

Composite optimization v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Optimality conditions:

0 ∈ ∇f(x∗) + ∂r(x∗)
0 ∈ α∇f(x∗) + α∂r(x∗)

x∗ ∈ α∇f(x∗) + (I + α∂r)(x∗)
x∗ − α∇f(x∗) ∈ (I + α∂r)(x∗)

x∗ = (I + α∂r)−1(x∗ − α∇f(x∗))

x∗ = proxr,α(x∗ − α∇f(x∗))

Which leads to the proximal gradient method:

xk+1 = proxr,α(xk − α∇f(xk))

And this method converges at a rate of O(1
k

)!

ñ Another form of proximal operator

proxf,α(xk) = proxαf (xk) = arg min
x∈Rn

[
αf(x) + 1

2∥x − xk∥2
2

]
proxf (xk) = arg min

x∈Rn

[
f(x) + 1

2∥x − xk∥2
2

]

Composite optimization v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Optimality conditions:

0 ∈ ∇f(x∗) + ∂r(x∗)
0 ∈ α∇f(x∗) + α∂r(x∗)

x∗ ∈ α∇f(x∗) + (I + α∂r)(x∗)
x∗ − α∇f(x∗) ∈ (I + α∂r)(x∗)

x∗ = (I + α∂r)−1(x∗ − α∇f(x∗))
x∗ = proxr,α(x∗ − α∇f(x∗))

Which leads to the proximal gradient method:

xk+1 = proxr,α(xk − α∇f(xk))

And this method converges at a rate of O(1
k

)!

ñ Another form of proximal operator

proxf,α(xk) = proxαf (xk) = arg min
x∈Rn

[
αf(x) + 1

2∥x − xk∥2
2

]
proxf (xk) = arg min

x∈Rn

[
f(x) + 1

2∥x − xk∥2
2

]

Composite optimization v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Optimality conditions:

0 ∈ ∇f(x∗) + ∂r(x∗)
0 ∈ α∇f(x∗) + α∂r(x∗)

x∗ ∈ α∇f(x∗) + (I + α∂r)(x∗)
x∗ − α∇f(x∗) ∈ (I + α∂r)(x∗)

x∗ = (I + α∂r)−1(x∗ − α∇f(x∗))
x∗ = proxr,α(x∗ − α∇f(x∗))

Which leads to the proximal gradient method:

xk+1 = proxr,α(xk − α∇f(xk))

And this method converges at a rate of O(1
k

)!

ñ Another form of proximal operator

proxf,α(xk) = proxαf (xk) = arg min
x∈Rn

[
αf(x) + 1

2∥x − xk∥2
2

]
proxf (xk) = arg min

x∈Rn

[
f(x) + 1

2∥x − xk∥2
2

]

Composite optimization v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Optimality conditions:

0 ∈ ∇f(x∗) + ∂r(x∗)
0 ∈ α∇f(x∗) + α∂r(x∗)

x∗ ∈ α∇f(x∗) + (I + α∂r)(x∗)
x∗ − α∇f(x∗) ∈ (I + α∂r)(x∗)

x∗ = (I + α∂r)−1(x∗ − α∇f(x∗))
x∗ = proxr,α(x∗ − α∇f(x∗))

Which leads to the proximal gradient method:

xk+1 = proxr,α(xk − α∇f(xk))

And this method converges at a rate of O(1
k

)!

ñ Another form of proximal operator

proxf,α(xk) = proxαf (xk) = arg min
x∈Rn

[
αf(x) + 1

2∥x − xk∥2
2

]
proxf (xk) = arg min

x∈Rn

[
f(x) + 1

2∥x − xk∥2
2

]

Composite optimization v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal mapping intuition
Optimality conditions:

0 ∈ ∇f(x∗) + ∂r(x∗)
0 ∈ α∇f(x∗) + α∂r(x∗)

x∗ ∈ α∇f(x∗) + (I + α∂r)(x∗)
x∗ − α∇f(x∗) ∈ (I + α∂r)(x∗)

x∗ = (I + α∂r)−1(x∗ − α∇f(x∗))
x∗ = proxr,α(x∗ − α∇f(x∗))

Which leads to the proximal gradient method:

xk+1 = proxr,α(xk − α∇f(xk))

And this method converges at a rate of O(1
k

)!

ñ Another form of proximal operator

proxf,α(xk) = proxαf (xk) = arg min
x∈Rn

[
αf(x) + 1

2∥x − xk∥2
2

]
proxf (xk) = arg min

x∈Rn

[
f(x) + 1

2∥x − xk∥2
2

]
Composite optimization v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal operators examples

• r(x) = λ∥x∥1, λ > 0
[proxr(x)]i = [|xi| − λ]+ · sign(xi),

which is also known as soft-thresholding operator.

• r(x) = λ
2 ∥x∥2

2, λ > 0
proxr(x) = x

1 + λ
.

• r(x) = IS(x).
proxr(xk − α∇f(xk)) = projr(xk − α∇f(xk))

Composite optimization v § } 62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal operators examples

• r(x) = λ∥x∥1, λ > 0
[proxr(x)]i = [|xi| − λ]+ · sign(xi),

which is also known as soft-thresholding operator.
• r(x) = λ

2 ∥x∥2
2, λ > 0

proxr(x) = x

1 + λ
.

• r(x) = IS(x).
proxr(xk − α∇f(xk)) = projr(xk − α∇f(xk))

Composite optimization v § } 62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal operators examples

• r(x) = λ∥x∥1, λ > 0
[proxr(x)]i = [|xi| − λ]+ · sign(xi),

which is also known as soft-thresholding operator.
• r(x) = λ

2 ∥x∥2
2, λ > 0

proxr(x) = x

1 + λ
.

• r(x) = IS(x).
proxr(xk − α∇f(xk)) = projr(xk − α∇f(xk))

Composite optimization v § } 62

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal Gradient Method. Convex case

Proximal Gradient Method. Convex case v § } 63

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence

ñ Theorem

Consider the proximal gradient method

xk+1 = proxαr (xk − α∇f(xk))

For the criterion φ(x) = f(x) + r(x), we assume:
• f is convex, differentiable, dom(f) = Rn, and ∇f is Lipschitz continuous with constant L > 0.
• r is convex, and proxαr(xk) = arg min

x∈Rn

[
αr(x) + 1

2 ∥x − xk∥2
2
]

can be evaluated.
Proximal gradient descent with fixed step size α = 1/L satisfies

φ(xk) − φ∗ ≤ L∥x0 − x∗∥2

2k
,

Proximal gradient descent has a convergence rate of O(1/k) or O(1/ε). This matches the gradient descent rate!
(But remember the proximal operation cost)

Proximal Gradient Method. Convex case v § } 64

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Proximal Gradient Method. Strongly convex case

Proximal Gradient Method. Strongly convex case v § } 65

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence

ñ Theorem

Consider the proximal gradient method

xk+1 = proxαr (xk − α∇f(xk))

For the criterion φ(x) = f(x) + r(x), we assume:
• f is µ-strongly convex, differentiable, dom(f) = Rn, and ∇f is Lipschitz continuous with constant

L > 0.
• r is convex, and proxαr(xk) = arg min

x∈Rn

[
αr(x) + 1

2 ∥x − xk∥2
2
]

can be evaluated.
Proximal gradient descent with fixed step size α ≤ 1/L satisfies

∥xk+1 − x∗∥2
2 ≤ (1 − αµ)k ∥x0 − x∗∥2

2

This is exactly gradient descent convergence rate. Note, that the original problem is even non-smooth!

Proximal Gradient Method. Strongly convex case v § } 66

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Accelerated Proximal Method

ñ Accelerated Proximal Method

Let x0 = y0 ∈ dom(r). For k ≥ 1:

xk = proxαkh(yk−1 − αk∇f(yk−1))

yk = xk + k − 1
k + 2(xk − xk−1)

Achieves
φ(xk) − φ∗ ≤ 2L∥x0 − x∗∥2

k2 .

Framework due to: Nesterov (1983, 2004); also Beck, Teboulle (2009). Simplified analysis: Tseng (2008).

• Uses extra “memory” for interpolation
• Same computational cost as ordinary prox-grad
• Convergence rate theoretically optimal

Proximal Gradient Method. Strongly convex case v § } 67

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Accelerated Proximal Method

ñ Accelerated Proximal Method

Let x0 = y0 ∈ dom(r). For k ≥ 1:

xk = proxαkh(yk−1 − αk∇f(yk−1))

yk = xk + k − 1
k + 2(xk − xk−1)

Achieves
φ(xk) − φ∗ ≤ 2L∥x0 − x∗∥2

k2 .

Framework due to: Nesterov (1983, 2004); also Beck, Teboulle (2009). Simplified analysis: Tseng (2008).
• Uses extra “memory” for interpolation

• Same computational cost as ordinary prox-grad
• Convergence rate theoretically optimal

Proximal Gradient Method. Strongly convex case v § } 67

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Accelerated Proximal Method

ñ Accelerated Proximal Method

Let x0 = y0 ∈ dom(r). For k ≥ 1:

xk = proxαkh(yk−1 − αk∇f(yk−1))

yk = xk + k − 1
k + 2(xk − xk−1)

Achieves
φ(xk) − φ∗ ≤ 2L∥x0 − x∗∥2

k2 .

Framework due to: Nesterov (1983, 2004); also Beck, Teboulle (2009). Simplified analysis: Tseng (2008).
• Uses extra “memory” for interpolation
• Same computational cost as ordinary prox-grad

• Convergence rate theoretically optimal

Proximal Gradient Method. Strongly convex case v § } 67

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Accelerated Proximal Method

ñ Accelerated Proximal Method

Let x0 = y0 ∈ dom(r). For k ≥ 1:

xk = proxαkh(yk−1 − αk∇f(yk−1))

yk = xk + k − 1
k + 2(xk − xk−1)

Achieves
φ(xk) − φ∗ ≤ 2L∥x0 − x∗∥2

k2 .

Framework due to: Nesterov (1983, 2004); also Beck, Teboulle (2009). Simplified analysis: Tseng (2008).
• Uses extra “memory” for interpolation
• Same computational cost as ordinary prox-grad
• Convergence rate theoretically optimal

Proximal Gradient Method. Strongly convex case v § } 67

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: ISTA

Iterative Shrinkage-Thresholding Algorithm (ISTA)
ISTA is a popular method for solving optimization problems involving L1 regularization, such as Lasso. It combines
gradient descent with a shrinkage operator to handle the non-smooth L1 penalty effectively.

• Algorithm:

• Given x0, for k ≥ 0, repeat:
xk+1 = proxλα∥·∥1 (xk − α∇f(xk)) ,

where proxλα∥·∥1 (v) applies soft thresholding to each component of v.
• Convergence:

• Converges at a rate of O(1/k) for suitable step size α.

• Application:

• Efficient for sparse signal recovery, image processing, and compressed sensing.

Proximal Gradient Method. Strongly convex case v § } 68

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: ISTA

Iterative Shrinkage-Thresholding Algorithm (ISTA)
ISTA is a popular method for solving optimization problems involving L1 regularization, such as Lasso. It combines
gradient descent with a shrinkage operator to handle the non-smooth L1 penalty effectively.

• Algorithm:
• Given x0, for k ≥ 0, repeat:

xk+1 = proxλα∥·∥1 (xk − α∇f(xk)) ,

where proxλα∥·∥1 (v) applies soft thresholding to each component of v.

• Convergence:

• Converges at a rate of O(1/k) for suitable step size α.

• Application:

• Efficient for sparse signal recovery, image processing, and compressed sensing.

Proximal Gradient Method. Strongly convex case v § } 68

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: ISTA

Iterative Shrinkage-Thresholding Algorithm (ISTA)
ISTA is a popular method for solving optimization problems involving L1 regularization, such as Lasso. It combines
gradient descent with a shrinkage operator to handle the non-smooth L1 penalty effectively.

• Algorithm:
• Given x0, for k ≥ 0, repeat:

xk+1 = proxλα∥·∥1 (xk − α∇f(xk)) ,

where proxλα∥·∥1 (v) applies soft thresholding to each component of v.
• Convergence:

• Converges at a rate of O(1/k) for suitable step size α.
• Application:

• Efficient for sparse signal recovery, image processing, and compressed sensing.

Proximal Gradient Method. Strongly convex case v § } 68

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: ISTA

Iterative Shrinkage-Thresholding Algorithm (ISTA)
ISTA is a popular method for solving optimization problems involving L1 regularization, such as Lasso. It combines
gradient descent with a shrinkage operator to handle the non-smooth L1 penalty effectively.

• Algorithm:
• Given x0, for k ≥ 0, repeat:

xk+1 = proxλα∥·∥1 (xk − α∇f(xk)) ,

where proxλα∥·∥1 (v) applies soft thresholding to each component of v.
• Convergence:

• Converges at a rate of O(1/k) for suitable step size α.

• Application:

• Efficient for sparse signal recovery, image processing, and compressed sensing.

Proximal Gradient Method. Strongly convex case v § } 68

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: ISTA

Iterative Shrinkage-Thresholding Algorithm (ISTA)
ISTA is a popular method for solving optimization problems involving L1 regularization, such as Lasso. It combines
gradient descent with a shrinkage operator to handle the non-smooth L1 penalty effectively.

• Algorithm:
• Given x0, for k ≥ 0, repeat:

xk+1 = proxλα∥·∥1 (xk − α∇f(xk)) ,

where proxλα∥·∥1 (v) applies soft thresholding to each component of v.
• Convergence:

• Converges at a rate of O(1/k) for suitable step size α.
• Application:

• Efficient for sparse signal recovery, image processing, and compressed sensing.

Proximal Gradient Method. Strongly convex case v § } 68

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: ISTA

Iterative Shrinkage-Thresholding Algorithm (ISTA)
ISTA is a popular method for solving optimization problems involving L1 regularization, such as Lasso. It combines
gradient descent with a shrinkage operator to handle the non-smooth L1 penalty effectively.

• Algorithm:
• Given x0, for k ≥ 0, repeat:

xk+1 = proxλα∥·∥1 (xk − α∇f(xk)) ,

where proxλα∥·∥1 (v) applies soft thresholding to each component of v.
• Convergence:

• Converges at a rate of O(1/k) for suitable step size α.
• Application:

• Efficient for sparse signal recovery, image processing, and compressed sensing.

Proximal Gradient Method. Strongly convex case v § } 68

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
FISTA improves upon ISTA’s convergence rate by incorporating a momentum term, inspired by Nesterov’s
accelerated gradient method.

• Algorithm:

• Initialize x0 = y0, t0 = 1.
• For k ≥ 1, update:

xk = proxλα∥·∥1 (yk−1 − α∇f(yk−1)) ,

tk =
1 +

√
1 + 4t2

k−1

2
,

yk = xk +
tk−1 − 1

tk
(xk − xk−1).

• Convergence:

• Improves the convergence rate to O(1/k2).

• Application:

• Especially useful for large-scale problems in machine learning and signal processing where the L1 penalty induces
sparsity.

Proximal Gradient Method. Strongly convex case v § } 69

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
FISTA improves upon ISTA’s convergence rate by incorporating a momentum term, inspired by Nesterov’s
accelerated gradient method.

• Algorithm:
• Initialize x0 = y0, t0 = 1.

• For k ≥ 1, update:
xk = proxλα∥·∥1 (yk−1 − α∇f(yk−1)) ,

tk =
1 +

√
1 + 4t2

k−1

2
,

yk = xk +
tk−1 − 1

tk
(xk − xk−1).

• Convergence:

• Improves the convergence rate to O(1/k2).

• Application:

• Especially useful for large-scale problems in machine learning and signal processing where the L1 penalty induces
sparsity.

Proximal Gradient Method. Strongly convex case v § } 69

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
FISTA improves upon ISTA’s convergence rate by incorporating a momentum term, inspired by Nesterov’s
accelerated gradient method.

• Algorithm:
• Initialize x0 = y0, t0 = 1.
• For k ≥ 1, update:

xk = proxλα∥·∥1 (yk−1 − α∇f(yk−1)) ,

tk =
1 +

√
1 + 4t2

k−1

2
,

yk = xk +
tk−1 − 1

tk
(xk − xk−1).

• Convergence:

• Improves the convergence rate to O(1/k2).

• Application:

• Especially useful for large-scale problems in machine learning and signal processing where the L1 penalty induces
sparsity.

Proximal Gradient Method. Strongly convex case v § } 69

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
FISTA improves upon ISTA’s convergence rate by incorporating a momentum term, inspired by Nesterov’s
accelerated gradient method.

• Algorithm:
• Initialize x0 = y0, t0 = 1.
• For k ≥ 1, update:

xk = proxλα∥·∥1 (yk−1 − α∇f(yk−1)) ,

tk =
1 +

√
1 + 4t2

k−1

2
,

yk = xk +
tk−1 − 1

tk
(xk − xk−1).

• Convergence:

• Improves the convergence rate to O(1/k2).
• Application:

• Especially useful for large-scale problems in machine learning and signal processing where the L1 penalty induces
sparsity.

Proximal Gradient Method. Strongly convex case v § } 69

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
FISTA improves upon ISTA’s convergence rate by incorporating a momentum term, inspired by Nesterov’s
accelerated gradient method.

• Algorithm:
• Initialize x0 = y0, t0 = 1.
• For k ≥ 1, update:

xk = proxλα∥·∥1 (yk−1 − α∇f(yk−1)) ,

tk =
1 +

√
1 + 4t2

k−1

2
,

yk = xk +
tk−1 − 1

tk
(xk − xk−1).

• Convergence:
• Improves the convergence rate to O(1/k2).

• Application:

• Especially useful for large-scale problems in machine learning and signal processing where the L1 penalty induces
sparsity.

Proximal Gradient Method. Strongly convex case v § } 69

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
FISTA improves upon ISTA’s convergence rate by incorporating a momentum term, inspired by Nesterov’s
accelerated gradient method.

• Algorithm:
• Initialize x0 = y0, t0 = 1.
• For k ≥ 1, update:

xk = proxλα∥·∥1 (yk−1 − α∇f(yk−1)) ,

tk =
1 +

√
1 + 4t2

k−1

2
,

yk = xk +
tk−1 − 1

tk
(xk − xk−1).

• Convergence:
• Improves the convergence rate to O(1/k2).

• Application:

• Especially useful for large-scale problems in machine learning and signal processing where the L1 penalty induces
sparsity.

Proximal Gradient Method. Strongly convex case v § } 69

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
FISTA improves upon ISTA’s convergence rate by incorporating a momentum term, inspired by Nesterov’s
accelerated gradient method.

• Algorithm:
• Initialize x0 = y0, t0 = 1.
• For k ≥ 1, update:

xk = proxλα∥·∥1 (yk−1 − α∇f(yk−1)) ,

tk =
1 +

√
1 + 4t2

k−1

2
,

yk = xk +
tk−1 − 1

tk
(xk − xk−1).

• Convergence:
• Improves the convergence rate to O(1/k2).

• Application:
• Especially useful for large-scale problems in machine learning and signal processing where the L1 penalty induces

sparsity.

Proximal Gradient Method. Strongly convex case v § } 69

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Matrix Completion

Solving the Matrix Completion Problem
Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain
assumptions, typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum
of singular values), which promotes low-rank solutions.

• Problem Formulation:
min

X

1
2∥PΩ(X) − PΩ(M)∥2

F + λ∥X∥∗,

where PΩ projects onto the observed set Ω, and ∥ · ∥∗ denotes the nuclear norm.

• Proximal Operator:

• The proximal operator for the nuclear norm involves singular value decomposition (SVD) and soft-thresholding of
the singular values.

• Algorithm:

• Similar proximal gradient or accelerated proximal gradient methods can be applied, where the main computational
effort lies in performing partial SVDs.

• Application:

• Widely used in recommender systems, image recovery, and other domains where data is naturally matrix-formed but
partially observed.

Proximal Gradient Method. Strongly convex case v § } 70

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Matrix Completion

Solving the Matrix Completion Problem
Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain
assumptions, typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum
of singular values), which promotes low-rank solutions.

• Problem Formulation:
min

X

1
2∥PΩ(X) − PΩ(M)∥2

F + λ∥X∥∗,

where PΩ projects onto the observed set Ω, and ∥ · ∥∗ denotes the nuclear norm.
• Proximal Operator:

• The proximal operator for the nuclear norm involves singular value decomposition (SVD) and soft-thresholding of
the singular values.

• Algorithm:

• Similar proximal gradient or accelerated proximal gradient methods can be applied, where the main computational
effort lies in performing partial SVDs.

• Application:

• Widely used in recommender systems, image recovery, and other domains where data is naturally matrix-formed but
partially observed.

Proximal Gradient Method. Strongly convex case v § } 70

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Matrix Completion

Solving the Matrix Completion Problem
Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain
assumptions, typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum
of singular values), which promotes low-rank solutions.

• Problem Formulation:
min

X

1
2∥PΩ(X) − PΩ(M)∥2

F + λ∥X∥∗,

where PΩ projects onto the observed set Ω, and ∥ · ∥∗ denotes the nuclear norm.
• Proximal Operator:

• The proximal operator for the nuclear norm involves singular value decomposition (SVD) and soft-thresholding of
the singular values.

• Algorithm:

• Similar proximal gradient or accelerated proximal gradient methods can be applied, where the main computational
effort lies in performing partial SVDs.

• Application:

• Widely used in recommender systems, image recovery, and other domains where data is naturally matrix-formed but
partially observed.

Proximal Gradient Method. Strongly convex case v § } 70

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Matrix Completion

Solving the Matrix Completion Problem
Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain
assumptions, typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum
of singular values), which promotes low-rank solutions.

• Problem Formulation:
min

X

1
2∥PΩ(X) − PΩ(M)∥2

F + λ∥X∥∗,

where PΩ projects onto the observed set Ω, and ∥ · ∥∗ denotes the nuclear norm.
• Proximal Operator:

• The proximal operator for the nuclear norm involves singular value decomposition (SVD) and soft-thresholding of
the singular values.

• Algorithm:

• Similar proximal gradient or accelerated proximal gradient methods can be applied, where the main computational
effort lies in performing partial SVDs.

• Application:

• Widely used in recommender systems, image recovery, and other domains where data is naturally matrix-formed but
partially observed.

Proximal Gradient Method. Strongly convex case v § } 70

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Matrix Completion

Solving the Matrix Completion Problem
Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain
assumptions, typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum
of singular values), which promotes low-rank solutions.

• Problem Formulation:
min

X

1
2∥PΩ(X) − PΩ(M)∥2

F + λ∥X∥∗,

where PΩ projects onto the observed set Ω, and ∥ · ∥∗ denotes the nuclear norm.
• Proximal Operator:

• The proximal operator for the nuclear norm involves singular value decomposition (SVD) and soft-thresholding of
the singular values.

• Algorithm:
• Similar proximal gradient or accelerated proximal gradient methods can be applied, where the main computational

effort lies in performing partial SVDs.

• Application:

• Widely used in recommender systems, image recovery, and other domains where data is naturally matrix-formed but
partially observed.

Proximal Gradient Method. Strongly convex case v § } 70

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Matrix Completion

Solving the Matrix Completion Problem
Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain
assumptions, typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum
of singular values), which promotes low-rank solutions.

• Problem Formulation:
min

X

1
2∥PΩ(X) − PΩ(M)∥2

F + λ∥X∥∗,

where PΩ projects onto the observed set Ω, and ∥ · ∥∗ denotes the nuclear norm.
• Proximal Operator:

• The proximal operator for the nuclear norm involves singular value decomposition (SVD) and soft-thresholding of
the singular values.

• Algorithm:
• Similar proximal gradient or accelerated proximal gradient methods can be applied, where the main computational

effort lies in performing partial SVDs.
• Application:

• Widely used in recommender systems, image recovery, and other domains where data is naturally matrix-formed but
partially observed.

Proximal Gradient Method. Strongly convex case v § } 70

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Matrix Completion

Solving the Matrix Completion Problem
Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain
assumptions, typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum
of singular values), which promotes low-rank solutions.

• Problem Formulation:
min

X

1
2∥PΩ(X) − PΩ(M)∥2

F + λ∥X∥∗,

where PΩ projects onto the observed set Ω, and ∥ · ∥∗ denotes the nuclear norm.
• Proximal Operator:

• The proximal operator for the nuclear norm involves singular value decomposition (SVD) and soft-thresholding of
the singular values.

• Algorithm:
• Similar proximal gradient or accelerated proximal gradient methods can be applied, where the main computational

effort lies in performing partial SVDs.
• Application:

• Widely used in recommender systems, image recovery, and other domains where data is naturally matrix-formed but
partially observed.

Proximal Gradient Method. Strongly convex case v § } 70

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

• If we exploit the structure of the problem, we may beat the lower bounds for the unstructured problem.

• Proximal gradient method for a composite problem with an L-smooth convex function f and a convex proximal
friendly function r has the same convergence as the gradient descent method for the function f . The
smoothness/non-smoothness properties of r do not affect convergence.

• It seems that by putting f = 0, any nonsmooth problem can be solved using such a method. Question: is this
true?

If we allow the proximal operator to be inexact (numerically), then it is true that we can solve any nonsmooth
optimization problem. But this is not better from the point of view of theory than solving the problem by
subgradient descent, because some auxiliary method (for example, the same subgradient descent) is used to
solve the proximal subproblem.

• Proximal method is a general modern framework for many numerical methods. Further development includes
accelerated, stochastic, primal-dual modifications and etc.

• Further reading: Proximal operator splitting, Douglas-Rachford splitting, Best approximation problem, Three
operator splitting.

Proximal Gradient Method. Strongly convex case v § } 71

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

• If we exploit the structure of the problem, we may beat the lower bounds for the unstructured problem.
• Proximal gradient method for a composite problem with an L-smooth convex function f and a convex proximal

friendly function r has the same convergence as the gradient descent method for the function f . The
smoothness/non-smoothness properties of r do not affect convergence.

• It seems that by putting f = 0, any nonsmooth problem can be solved using such a method. Question: is this
true?

If we allow the proximal operator to be inexact (numerically), then it is true that we can solve any nonsmooth
optimization problem. But this is not better from the point of view of theory than solving the problem by
subgradient descent, because some auxiliary method (for example, the same subgradient descent) is used to
solve the proximal subproblem.

• Proximal method is a general modern framework for many numerical methods. Further development includes
accelerated, stochastic, primal-dual modifications and etc.

• Further reading: Proximal operator splitting, Douglas-Rachford splitting, Best approximation problem, Three
operator splitting.

Proximal Gradient Method. Strongly convex case v § } 71

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

• If we exploit the structure of the problem, we may beat the lower bounds for the unstructured problem.
• Proximal gradient method for a composite problem with an L-smooth convex function f and a convex proximal

friendly function r has the same convergence as the gradient descent method for the function f . The
smoothness/non-smoothness properties of r do not affect convergence.

• It seems that by putting f = 0, any nonsmooth problem can be solved using such a method. Question: is this
true?

If we allow the proximal operator to be inexact (numerically), then it is true that we can solve any nonsmooth
optimization problem. But this is not better from the point of view of theory than solving the problem by
subgradient descent, because some auxiliary method (for example, the same subgradient descent) is used to
solve the proximal subproblem.

• Proximal method is a general modern framework for many numerical methods. Further development includes
accelerated, stochastic, primal-dual modifications and etc.

• Further reading: Proximal operator splitting, Douglas-Rachford splitting, Best approximation problem, Three
operator splitting.

Proximal Gradient Method. Strongly convex case v § } 71

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

• If we exploit the structure of the problem, we may beat the lower bounds for the unstructured problem.
• Proximal gradient method for a composite problem with an L-smooth convex function f and a convex proximal

friendly function r has the same convergence as the gradient descent method for the function f . The
smoothness/non-smoothness properties of r do not affect convergence.

• It seems that by putting f = 0, any nonsmooth problem can be solved using such a method. Question: is this
true?

If we allow the proximal operator to be inexact (numerically), then it is true that we can solve any nonsmooth
optimization problem. But this is not better from the point of view of theory than solving the problem by
subgradient descent, because some auxiliary method (for example, the same subgradient descent) is used to
solve the proximal subproblem.

• Proximal method is a general modern framework for many numerical methods. Further development includes
accelerated, stochastic, primal-dual modifications and etc.

• Further reading: Proximal operator splitting, Douglas-Rachford splitting, Best approximation problem, Three
operator splitting.

Proximal Gradient Method. Strongly convex case v § } 71

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

• If we exploit the structure of the problem, we may beat the lower bounds for the unstructured problem.
• Proximal gradient method for a composite problem with an L-smooth convex function f and a convex proximal

friendly function r has the same convergence as the gradient descent method for the function f . The
smoothness/non-smoothness properties of r do not affect convergence.

• It seems that by putting f = 0, any nonsmooth problem can be solved using such a method. Question: is this
true?

If we allow the proximal operator to be inexact (numerically), then it is true that we can solve any nonsmooth
optimization problem. But this is not better from the point of view of theory than solving the problem by
subgradient descent, because some auxiliary method (for example, the same subgradient descent) is used to
solve the proximal subproblem.

• Proximal method is a general modern framework for many numerical methods. Further development includes
accelerated, stochastic, primal-dual modifications and etc.

• Further reading: Proximal operator splitting, Douglas-Rachford splitting, Best approximation problem, Three
operator splitting.

Proximal Gradient Method. Strongly convex case v § } 71

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

• If we exploit the structure of the problem, we may beat the lower bounds for the unstructured problem.
• Proximal gradient method for a composite problem with an L-smooth convex function f and a convex proximal

friendly function r has the same convergence as the gradient descent method for the function f . The
smoothness/non-smoothness properties of r do not affect convergence.

• It seems that by putting f = 0, any nonsmooth problem can be solved using such a method. Question: is this
true?

If we allow the proximal operator to be inexact (numerically), then it is true that we can solve any nonsmooth
optimization problem. But this is not better from the point of view of theory than solving the problem by
subgradient descent, because some auxiliary method (for example, the same subgradient descent) is used to
solve the proximal subproblem.

• Proximal method is a general modern framework for many numerical methods. Further development includes
accelerated, stochastic, primal-dual modifications and etc.

• Further reading: Proximal operator splitting, Douglas-Rachford splitting, Best approximation problem, Three
operator splitting.

Proximal Gradient Method. Strongly convex case v § } 71

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method

Newton method v § } 72

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Idea of Newton method of root finding
Consider the function φ(x) : R → R.

The whole idea came from building a linear
approximation at the point xk and find its
root, which will be the new iteration point:

φ′(xk) = φ(xk)
xk+1 − xk

We get an iterative scheme:

xk+1 = xk − φ(xk)
φ′(xk) .

Which will become a Newton optimization
method in case f ′(x) = φ(x)a:

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk)

aLiterally we aim to solve the problem of finding
stationary points ∇f(x) = 0

Newton method v § } 73

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Idea of Newton method of root finding
Consider the function φ(x) : R → R.
The whole idea came from building a linear
approximation at the point xk and find its
root, which will be the new iteration point:

φ′(xk) = φ(xk)
xk+1 − xk

We get an iterative scheme:

xk+1 = xk − φ(xk)
φ′(xk) .

Which will become a Newton optimization
method in case f ′(x) = φ(x)a:

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk)

aLiterally we aim to solve the problem of finding
stationary points ∇f(x) = 0

Newton method v § } 73

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Idea of Newton method of root finding
Consider the function φ(x) : R → R.
The whole idea came from building a linear
approximation at the point xk and find its
root, which will be the new iteration point:

φ′(xk) = φ(xk)
xk+1 − xk

We get an iterative scheme:

xk+1 = xk − φ(xk)
φ′(xk) .

Which will become a Newton optimization
method in case f ′(x) = φ(x)a:

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk)

aLiterally we aim to solve the problem of finding
stationary points ∇f(x) = 0

Newton method v § } 73

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Idea of Newton method of root finding
Consider the function φ(x) : R → R.
The whole idea came from building a linear
approximation at the point xk and find its
root, which will be the new iteration point:

φ′(xk) = φ(xk)
xk+1 − xk

We get an iterative scheme:

xk+1 = xk − φ(xk)
φ′(xk) .

Which will become a Newton optimization
method in case f ′(x) = φ(x)a:

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk)

aLiterally we aim to solve the problem of finding
stationary points ∇f(x) = 0

Newton method v § } 73

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Idea of Newton method of root finding
Consider the function φ(x) : R → R.
The whole idea came from building a linear
approximation at the point xk and find its
root, which will be the new iteration point:

φ′(xk) = φ(xk)
xk+1 − xk

We get an iterative scheme:

xk+1 = xk − φ(xk)
φ′(xk) .

Which will become a Newton optimization
method in case f ′(x) = φ(x)a:

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk)
aLiterally we aim to solve the problem of finding

stationary points ∇f(x) = 0

Newton method v § } 73

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Idea of Newton method of root finding
Consider the function φ(x) : R → R.
The whole idea came from building a linear
approximation at the point xk and find its
root, which will be the new iteration point:

φ′(xk) = φ(xk)
xk+1 − xk

We get an iterative scheme:

xk+1 = xk − φ(xk)
φ′(xk) .

Which will become a Newton optimization
method in case f ′(x) = φ(x)a:

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk)
aLiterally we aim to solve the problem of finding

stationary points ∇f(x) = 0

Newton method v § } 73

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Idea of Newton method of root finding
Consider the function φ(x) : R → R.
The whole idea came from building a linear
approximation at the point xk and find its
root, which will be the new iteration point:

φ′(xk) = φ(xk)
xk+1 − xk

We get an iterative scheme:

xk+1 = xk − φ(xk)
φ′(xk) .

Which will become a Newton optimization
method in case f ′(x) = φ(x)a:

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk)
aLiterally we aim to solve the problem of finding

stationary points ∇f(x) = 0

Newton method v § } 73

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point xk. Let us consider the quadratic approximation of this
function near xk:

fII
xk

(x) = f(xk) + ⟨∇f(xk), x − xk⟩ + 1
2 ⟨∇2f(xk)(x − xk), x − xk⟩.

The idea of the method is to find the point xk+1, that minimizes the function fII
xk

(x), i.e. ∇fII
xk

(xk+1) = 0.

∇fII
xk

(xk+1) = ∇f(xk) + ∇2f(xk)(xk+1 − xk) = 0
∇2f(xk)(xk+1 − xk) = −∇f(xk)[

∇2f(xk)
]−1 ∇2f(xk)(xk+1 − xk) = −

[
∇2f(xk)

]−1 ∇f(xk)

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).

Newton method v § } 74

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point xk. Let us consider the quadratic approximation of this
function near xk:

fII
xk

(x) = f(xk) + ⟨∇f(xk), x − xk⟩ + 1
2 ⟨∇2f(xk)(x − xk), x − xk⟩.

The idea of the method is to find the point xk+1, that minimizes the function fII
xk

(x), i.e. ∇fII
xk

(xk+1) = 0.

∇fII
xk

(xk+1) = ∇f(xk) + ∇2f(xk)(xk+1 − xk) = 0
∇2f(xk)(xk+1 − xk) = −∇f(xk)[

∇2f(xk)
]−1 ∇2f(xk)(xk+1 − xk) = −

[
∇2f(xk)

]−1 ∇f(xk)

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).

Newton method v § } 74

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point xk. Let us consider the quadratic approximation of this
function near xk:

fII
xk

(x) = f(xk) + ⟨∇f(xk), x − xk⟩ + 1
2 ⟨∇2f(xk)(x − xk), x − xk⟩.

The idea of the method is to find the point xk+1, that minimizes the function fII
xk

(x), i.e. ∇fII
xk

(xk+1) = 0.

∇fII
xk

(xk+1) = ∇f(xk) + ∇2f(xk)(xk+1 − xk) = 0
∇2f(xk)(xk+1 − xk) = −∇f(xk)[

∇2f(xk)
]−1 ∇2f(xk)(xk+1 − xk) = −

[
∇2f(xk)

]−1 ∇f(xk)

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).

Newton method v § } 74

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point xk. Let us consider the quadratic approximation of this
function near xk:

fII
xk

(x) = f(xk) + ⟨∇f(xk), x − xk⟩ + 1
2 ⟨∇2f(xk)(x − xk), x − xk⟩.

The idea of the method is to find the point xk+1, that minimizes the function fII
xk

(x), i.e. ∇fII
xk

(xk+1) = 0.

∇fII
xk

(xk+1) = ∇f(xk) + ∇2f(xk)(xk+1 − xk) = 0

∇2f(xk)(xk+1 − xk) = −∇f(xk)[
∇2f(xk)

]−1 ∇2f(xk)(xk+1 − xk) = −
[
∇2f(xk)

]−1 ∇f(xk)

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).

Newton method v § } 74

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point xk. Let us consider the quadratic approximation of this
function near xk:

fII
xk

(x) = f(xk) + ⟨∇f(xk), x − xk⟩ + 1
2 ⟨∇2f(xk)(x − xk), x − xk⟩.

The idea of the method is to find the point xk+1, that minimizes the function fII
xk

(x), i.e. ∇fII
xk

(xk+1) = 0.

∇fII
xk

(xk+1) = ∇f(xk) + ∇2f(xk)(xk+1 − xk) = 0
∇2f(xk)(xk+1 − xk) = −∇f(xk)

[
∇2f(xk)

]−1 ∇2f(xk)(xk+1 − xk) = −
[
∇2f(xk)

]−1 ∇f(xk)

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).

Newton method v § } 74

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point xk. Let us consider the quadratic approximation of this
function near xk:

fII
xk

(x) = f(xk) + ⟨∇f(xk), x − xk⟩ + 1
2 ⟨∇2f(xk)(x − xk), x − xk⟩.

The idea of the method is to find the point xk+1, that minimizes the function fII
xk

(x), i.e. ∇fII
xk

(xk+1) = 0.

∇fII
xk

(xk+1) = ∇f(xk) + ∇2f(xk)(xk+1 − xk) = 0
∇2f(xk)(xk+1 − xk) = −∇f(xk)[

∇2f(xk)
]−1 ∇2f(xk)(xk+1 − xk) = −

[
∇2f(xk)

]−1 ∇f(xk)

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).

Newton method v § } 74

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point xk. Let us consider the quadratic approximation of this
function near xk:

fII
xk

(x) = f(xk) + ⟨∇f(xk), x − xk⟩ + 1
2 ⟨∇2f(xk)(x − xk), x − xk⟩.

The idea of the method is to find the point xk+1, that minimizes the function fII
xk

(x), i.e. ∇fII
xk

(xk+1) = 0.

∇fII
xk

(xk+1) = ∇f(xk) + ∇2f(xk)(xk+1 − xk) = 0
∇2f(xk)(xk+1 − xk) = −∇f(xk)[

∇2f(xk)
]−1 ∇2f(xk)(xk+1 − xk) = −

[
∇2f(xk)

]−1 ∇f(xk)

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).

Newton method v § } 74

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point xk. Let us consider the quadratic approximation of this
function near xk:

fII
xk

(x) = f(xk) + ⟨∇f(xk), x − xk⟩ + 1
2 ⟨∇2f(xk)(x − xk), x − xk⟩.

The idea of the method is to find the point xk+1, that minimizes the function fII
xk

(x), i.e. ∇fII
xk

(xk+1) = 0.

∇fII
xk

(xk+1) = ∇f(xk) + ∇2f(xk)(xk+1 − xk) = 0
∇2f(xk)(xk+1 − xk) = −∇f(xk)[

∇2f(xk)
]−1 ∇2f(xk)(xk+1 − xk) = −

[
∇2f(xk)

]−1 ∇f(xk)

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).

Newton method v § } 74

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point xk. Let us consider the quadratic approximation of this
function near xk:

fII
xk

(x) = f(xk) + ⟨∇f(xk), x − xk⟩ + 1
2 ⟨∇2f(xk)(x − xk), x − xk⟩.

The idea of the method is to find the point xk+1, that minimizes the function fII
xk

(x), i.e. ∇fII
xk

(xk+1) = 0.

∇fII
xk

(xk+1) = ∇f(xk) + ∇2f(xk)(xk+1 − xk) = 0
∇2f(xk)(xk+1 − xk) = −∇f(xk)[

∇2f(xk)
]−1 ∇2f(xk)(xk+1 − xk) = −

[
∇2f(xk)

]−1 ∇f(xk)

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).

Newton method v § } 74

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Figure 13: Illustration

Newton method v § } 75

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Figure 14: Illustration

Newton method v § } 75

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Figure 15: Illustration

Newton method v § } 75

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Figure 16: Illustration

Newton method v § } 75

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Figure 17: Illustration

Newton method v § } 75

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Figure 18: Illustration

Newton method v § } 75

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence

ñ Theorem

Let f(x) be a strongly convex twice continuously differentiable function at Rn, for the second derivative of
which inequalities are executed: µIn ⪯ ∇2f(x) ⪯ LIn. Then Newton’s method with a constant step locally
converges to solving the problem with superlinear speed. If, in addition, Hessian is M -Lipschitz continuous,
then this method converges locally to x∗ at a quadratic rate.

We have an important result: Newton’s method for the function with Lipschitz positive-definite Hessian converges
quadratically near (∥x0 − x∗∥ < 2µ

3M
) to the solution.

Newton method v § } 76

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 77

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 77

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 77

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 77

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 77

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:

• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 78

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance

• the parameters have little effect on the convergence rate

What’s not nice:

• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 78

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:

• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 78

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:

• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 78

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:
• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory

• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 78

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:
• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations

• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 78

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:
• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 78

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:
• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 78

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method problems

Figure 19: Animation Å
Newton method v § } 79

https://github.com/MerkulovDaniil/optim/raw/master/assets/Notebooks/Newton_convergence.mp4
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Newton method problems

Figure 20: Animation Å

Newton method v § } 80

https://fmin.xyz/docs/theory/inaccurate_taylor.mp4
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton methods

Quasi-Newton methods v § } 81

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton methods intuition

For the classic task of unconditional optimization f(x) → min
x∈Rn

the general scheme of iteration method is written as:

xk+1 = xk + αkdk

In the Newton method, the dk direction (Newton’s direction) is set by the linear system solution at each step:

Bkdk = −∇f(xk), Bk = ∇2f(xk)

i.e. at each iteration it is necessary to compute hessian and gradient and solve linear system.

Note here that if we take a single matrix of Bk = In as Bk at each step, we will exactly get the gradient descent
method.

The general scheme of quasi-Newton methods is based on the selection of the Bk matrix so that it tends in some
sense at k → ∞ to the truth value of the Hessian ∇2f(xk).

Quasi-Newton methods v § } 82

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton methods intuition

For the classic task of unconditional optimization f(x) → min
x∈Rn

the general scheme of iteration method is written as:

xk+1 = xk + αkdk

In the Newton method, the dk direction (Newton’s direction) is set by the linear system solution at each step:

Bkdk = −∇f(xk), Bk = ∇2f(xk)

i.e. at each iteration it is necessary to compute hessian and gradient and solve linear system.

Note here that if we take a single matrix of Bk = In as Bk at each step, we will exactly get the gradient descent
method.

The general scheme of quasi-Newton methods is based on the selection of the Bk matrix so that it tends in some
sense at k → ∞ to the truth value of the Hessian ∇2f(xk).

Quasi-Newton methods v § } 82

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton methods intuition

For the classic task of unconditional optimization f(x) → min
x∈Rn

the general scheme of iteration method is written as:

xk+1 = xk + αkdk

In the Newton method, the dk direction (Newton’s direction) is set by the linear system solution at each step:

Bkdk = −∇f(xk), Bk = ∇2f(xk)

i.e. at each iteration it is necessary to compute hessian and gradient and solve linear system.

Note here that if we take a single matrix of Bk = In as Bk at each step, we will exactly get the gradient descent
method.

The general scheme of quasi-Newton methods is based on the selection of the Bk matrix so that it tends in some
sense at k → ∞ to the truth value of the Hessian ∇2f(xk).

Quasi-Newton methods v § } 82

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton methods intuition

For the classic task of unconditional optimization f(x) → min
x∈Rn

the general scheme of iteration method is written as:

xk+1 = xk + αkdk

In the Newton method, the dk direction (Newton’s direction) is set by the linear system solution at each step:

Bkdk = −∇f(xk), Bk = ∇2f(xk)

i.e. at each iteration it is necessary to compute hessian and gradient and solve linear system.

Note here that if we take a single matrix of Bk = In as Bk at each step, we will exactly get the gradient descent
method.

The general scheme of quasi-Newton methods is based on the selection of the Bk matrix so that it tends in some
sense at k → ∞ to the truth value of the Hessian ∇2f(xk).

Quasi-Newton methods v § } 82

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton Method Template
Let x0 ∈ Rn, B0 ≻ 0. For k = 1, 2, 3, . . ., repeat:

1. Solve Bkdk = −∇f(xk)

2. Update xk+1 = xk + αkdk

3. Compute Bk+1 from Bk

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (Bk+1)−1

from (Bk)−1.

Basic Idea: As Bk already contains information about the Hessian, use a suitable matrix update to form Bk+1.

Reasonable Requirement for Bk+1 (motivated by the secant method):

∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1dk

∆yk = Bk+1∆xk

In addition to the secant equation, we want:

• Bk+1 to be symmetric
• Bk+1 to be “close” to Bk

• Bk ≻ 0 ⇒ Bk+1 ≻ 0

Quasi-Newton methods v § } 83

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton Method Template
Let x0 ∈ Rn, B0 ≻ 0. For k = 1, 2, 3, . . ., repeat:

1. Solve Bkdk = −∇f(xk)
2. Update xk+1 = xk + αkdk

3. Compute Bk+1 from Bk

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (Bk+1)−1

from (Bk)−1.

Basic Idea: As Bk already contains information about the Hessian, use a suitable matrix update to form Bk+1.

Reasonable Requirement for Bk+1 (motivated by the secant method):

∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1dk

∆yk = Bk+1∆xk

In addition to the secant equation, we want:

• Bk+1 to be symmetric
• Bk+1 to be “close” to Bk

• Bk ≻ 0 ⇒ Bk+1 ≻ 0

Quasi-Newton methods v § } 83

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton Method Template
Let x0 ∈ Rn, B0 ≻ 0. For k = 1, 2, 3, . . ., repeat:

1. Solve Bkdk = −∇f(xk)
2. Update xk+1 = xk + αkdk

3. Compute Bk+1 from Bk

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (Bk+1)−1

from (Bk)−1.

Basic Idea: As Bk already contains information about the Hessian, use a suitable matrix update to form Bk+1.

Reasonable Requirement for Bk+1 (motivated by the secant method):

∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1dk

∆yk = Bk+1∆xk

In addition to the secant equation, we want:

• Bk+1 to be symmetric
• Bk+1 to be “close” to Bk

• Bk ≻ 0 ⇒ Bk+1 ≻ 0

Quasi-Newton methods v § } 83

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton Method Template
Let x0 ∈ Rn, B0 ≻ 0. For k = 1, 2, 3, . . ., repeat:

1. Solve Bkdk = −∇f(xk)
2. Update xk+1 = xk + αkdk

3. Compute Bk+1 from Bk

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (Bk+1)−1

from (Bk)−1.

Basic Idea: As Bk already contains information about the Hessian, use a suitable matrix update to form Bk+1.

Reasonable Requirement for Bk+1 (motivated by the secant method):

∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1dk

∆yk = Bk+1∆xk

In addition to the secant equation, we want:

• Bk+1 to be symmetric
• Bk+1 to be “close” to Bk

• Bk ≻ 0 ⇒ Bk+1 ≻ 0

Quasi-Newton methods v § } 83

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton Method Template
Let x0 ∈ Rn, B0 ≻ 0. For k = 1, 2, 3, . . ., repeat:

1. Solve Bkdk = −∇f(xk)
2. Update xk+1 = xk + αkdk

3. Compute Bk+1 from Bk

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (Bk+1)−1

from (Bk)−1.

Basic Idea: As Bk already contains information about the Hessian, use a suitable matrix update to form Bk+1.

Reasonable Requirement for Bk+1 (motivated by the secant method):

∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1dk

∆yk = Bk+1∆xk

In addition to the secant equation, we want:

• Bk+1 to be symmetric
• Bk+1 to be “close” to Bk

• Bk ≻ 0 ⇒ Bk+1 ≻ 0

Quasi-Newton methods v § } 83

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton Method Template
Let x0 ∈ Rn, B0 ≻ 0. For k = 1, 2, 3, . . ., repeat:

1. Solve Bkdk = −∇f(xk)
2. Update xk+1 = xk + αkdk

3. Compute Bk+1 from Bk

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (Bk+1)−1

from (Bk)−1.

Basic Idea: As Bk already contains information about the Hessian, use a suitable matrix update to form Bk+1.

Reasonable Requirement for Bk+1 (motivated by the secant method):

∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1dk

∆yk = Bk+1∆xk

In addition to the secant equation, we want:

• Bk+1 to be symmetric
• Bk+1 to be “close” to Bk

• Bk ≻ 0 ⇒ Bk+1 ≻ 0

Quasi-Newton methods v § } 83

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton Method Template
Let x0 ∈ Rn, B0 ≻ 0. For k = 1, 2, 3, . . ., repeat:

1. Solve Bkdk = −∇f(xk)
2. Update xk+1 = xk + αkdk

3. Compute Bk+1 from Bk

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (Bk+1)−1

from (Bk)−1.

Basic Idea: As Bk already contains information about the Hessian, use a suitable matrix update to form Bk+1.

Reasonable Requirement for Bk+1 (motivated by the secant method):

∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1dk

∆yk = Bk+1∆xk

In addition to the secant equation, we want:

• Bk+1 to be symmetric
• Bk+1 to be “close” to Bk

• Bk ≻ 0 ⇒ Bk+1 ≻ 0

Quasi-Newton methods v § } 83

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton Method Template
Let x0 ∈ Rn, B0 ≻ 0. For k = 1, 2, 3, . . ., repeat:

1. Solve Bkdk = −∇f(xk)
2. Update xk+1 = xk + αkdk

3. Compute Bk+1 from Bk

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (Bk+1)−1

from (Bk)−1.

Basic Idea: As Bk already contains information about the Hessian, use a suitable matrix update to form Bk+1.

Reasonable Requirement for Bk+1 (motivated by the secant method):

∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1dk

∆yk = Bk+1∆xk

In addition to the secant equation, we want:
• Bk+1 to be symmetric

• Bk+1 to be “close” to Bk

• Bk ≻ 0 ⇒ Bk+1 ≻ 0

Quasi-Newton methods v § } 83

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton Method Template
Let x0 ∈ Rn, B0 ≻ 0. For k = 1, 2, 3, . . ., repeat:

1. Solve Bkdk = −∇f(xk)
2. Update xk+1 = xk + αkdk

3. Compute Bk+1 from Bk

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (Bk+1)−1

from (Bk)−1.

Basic Idea: As Bk already contains information about the Hessian, use a suitable matrix update to form Bk+1.

Reasonable Requirement for Bk+1 (motivated by the secant method):

∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1dk

∆yk = Bk+1∆xk

In addition to the secant equation, we want:
• Bk+1 to be symmetric
• Bk+1 to be “close” to Bk

• Bk ≻ 0 ⇒ Bk+1 ≻ 0

Quasi-Newton methods v § } 83

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Quasi-Newton Method Template
Let x0 ∈ Rn, B0 ≻ 0. For k = 1, 2, 3, . . ., repeat:

1. Solve Bkdk = −∇f(xk)
2. Update xk+1 = xk + αkdk

3. Compute Bk+1 from Bk

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (Bk+1)−1

from (Bk)−1.

Basic Idea: As Bk already contains information about the Hessian, use a suitable matrix update to form Bk+1.

Reasonable Requirement for Bk+1 (motivated by the secant method):

∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1dk

∆yk = Bk+1∆xk

In addition to the secant equation, we want:
• Bk+1 to be symmetric
• Bk+1 to be “close” to Bk

• Bk ≻ 0 ⇒ Bk+1 ≻ 0

Quasi-Newton methods v § } 83

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Symmetric Rank-One Update

Let’s try an update of the form:
Bk+1 = Bk + auuT

The secant equation Bk+1dk = ∆yk yields:

(auT dk)u = ∆yk − Bkdk

This only holds if u is a multiple of ∆yk − Bkdk. Putting u = ∆yk − Bkdk, we solve the above,

a = 1
(∆yk − Bkdk)T dk

,

which leads to
Bk+1 = Bk + (∆yk − Bkdk)(∆yk − Bkdk)T

(∆yk − Bkdk)T dk

called the symmetric rank-one (SR1) update or Broyden method.

Quasi-Newton methods v § } 84

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Symmetric Rank-One Update

Let’s try an update of the form:
Bk+1 = Bk + auuT

The secant equation Bk+1dk = ∆yk yields:

(auT dk)u = ∆yk − Bkdk

This only holds if u is a multiple of ∆yk − Bkdk. Putting u = ∆yk − Bkdk, we solve the above,

a = 1
(∆yk − Bkdk)T dk

,

which leads to
Bk+1 = Bk + (∆yk − Bkdk)(∆yk − Bkdk)T

(∆yk − Bkdk)T dk

called the symmetric rank-one (SR1) update or Broyden method.

Quasi-Newton methods v § } 84

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Symmetric Rank-One Update

Let’s try an update of the form:
Bk+1 = Bk + auuT

The secant equation Bk+1dk = ∆yk yields:

(auT dk)u = ∆yk − Bkdk

This only holds if u is a multiple of ∆yk − Bkdk. Putting u = ∆yk − Bkdk, we solve the above,

a = 1
(∆yk − Bkdk)T dk

,

which leads to
Bk+1 = Bk + (∆yk − Bkdk)(∆yk − Bkdk)T

(∆yk − Bkdk)T dk

called the symmetric rank-one (SR1) update or Broyden method.

Quasi-Newton methods v § } 84

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Symmetric Rank-One Update

Let’s try an update of the form:
Bk+1 = Bk + auuT

The secant equation Bk+1dk = ∆yk yields:

(auT dk)u = ∆yk − Bkdk

This only holds if u is a multiple of ∆yk − Bkdk. Putting u = ∆yk − Bkdk, we solve the above,

a = 1
(∆yk − Bkdk)T dk

,

which leads to
Bk+1 = Bk + (∆yk − Bkdk)(∆yk − Bkdk)T

(∆yk − Bkdk)T dk

called the symmetric rank-one (SR1) update or Broyden method.

Quasi-Newton methods v § } 84

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Symmetric Rank-One Update with inverse

How can we solve
Bk+1dk+1 = −∇f(xk+1),

in order to take the next step? In addition to propagating Bk to Bk+1, let’s propagate inverses, i.e., Ck = B−1
k to

Ck+1 = (Bk+1)−1.

Sherman-Morrison Formula:
The Sherman-Morrison formula states:

(A + uvT)−1 = A−1 − A−1uvT A−1

1 + vT A−1u

Thus, for the SR1 update, the inverse is also easily updated:

Ck+1 = Ck + (dk − Ck∆yk)(dk − Ck∆yk)T

(dk − Ck∆yk)T ∆yk

In general, SR1 is simple and cheap, but it has a key shortcoming: it does not preserve positive definiteness.

Quasi-Newton methods v § } 85

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Davidon-Fletcher-Powell Update

We could have pursued the same idea to update the inverse C:

Ck+1 = Ck + auuT + bvvT .

Multiplying by ∆yk, using the secant equation dk = Ck∆yk, and solving for a, b, yields:

Ck+1 = Ck − Ck∆yk∆yT
k Ck

∆yT
k Ck∆yk

+ dkdT
k

∆yT
k dk

Woodbury Formula Application
Woodbury then shows:

Bk+1 =
(

I − ∆ykdT
k

∆yT
k dk

)
Bk

(
I − dk∆yT

k

∆yT
k dk

)
+ ∆yk∆yT

k

∆yT
k dk

This is the Davidon-Fletcher-Powell (DFP) update. Also cheap: O(n2), preserves positive definiteness. Not as
popular as BFGS.

Quasi-Newton methods v § } 86

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Davidon-Fletcher-Powell Update

We could have pursued the same idea to update the inverse C:

Ck+1 = Ck + auuT + bvvT .

Multiplying by ∆yk, using the secant equation dk = Ck∆yk, and solving for a, b, yields:

Ck+1 = Ck − Ck∆yk∆yT
k Ck

∆yT
k Ck∆yk

+ dkdT
k

∆yT
k dk

Woodbury Formula Application
Woodbury then shows:

Bk+1 =
(

I − ∆ykdT
k

∆yT
k dk

)
Bk

(
I − dk∆yT

k

∆yT
k dk

)
+ ∆yk∆yT

k

∆yT
k dk

This is the Davidon-Fletcher-Powell (DFP) update. Also cheap: O(n2), preserves positive definiteness. Not as
popular as BFGS.

Quasi-Newton methods v § } 86

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Broyden-Fletcher-Goldfarb-Shanno update

Let’s now try a rank-two update:
Bk+1 = Bk + auuT + bvvT .

The secant equation ∆yk = Bk+1dk yields:

∆yk − Bkdk = (auT dk)u + (bvT dk)v

Putting u = ∆yk, v = Bkdk, and solving for a, b we get:

Bk+1 = Bk − BkdkdT
k Bk

dT
k Bkdk

+ ∆yk∆yT
k

dT
k ∆yk

called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.

Quasi-Newton methods v § } 87

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Broyden-Fletcher-Goldfarb-Shanno update

Let’s now try a rank-two update:
Bk+1 = Bk + auuT + bvvT .

The secant equation ∆yk = Bk+1dk yields:

∆yk − Bkdk = (auT dk)u + (bvT dk)v

Putting u = ∆yk, v = Bkdk, and solving for a, b we get:

Bk+1 = Bk − BkdkdT
k Bk

dT
k Bkdk

+ ∆yk∆yT
k

dT
k ∆yk

called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.

Quasi-Newton methods v § } 87

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Broyden-Fletcher-Goldfarb-Shanno update

Let’s now try a rank-two update:
Bk+1 = Bk + auuT + bvvT .

The secant equation ∆yk = Bk+1dk yields:

∆yk − Bkdk = (auT dk)u + (bvT dk)v

Putting u = ∆yk, v = Bkdk, and solving for a, b we get:

Bk+1 = Bk − BkdkdT
k Bk

dT
k Bkdk

+ ∆yk∆yT
k

dT
k ∆yk

called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.

Quasi-Newton methods v § } 87

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Broyden-Fletcher-Goldfarb-Shanno update with inverse

Woodbury Formula
The Woodbury formula, a generalization of the Sherman-Morrison formula, is given by:

(A + UCV)−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1

Applied to our case, we get a rank-two update on the inverse C:

Ck+1 = Ck + (dk − Ck∆yk)dT
k

∆yT
k dk

+ dk(dk − Ck∆yk)T

∆yT
k dk

− (dk − Ck∆yk)T ∆yk

(∆yT
k dk)2 dkdT

k

Ck+1 =
(

I − dk∆yT
k

∆yT
k dk

)
Ck

(
I − ∆ykdT

k

∆yT
k dk

)
+ dkdT

k

∆yT
k dk

This formulation ensures that the BFGS update, while comprehensive, remains computationally efficient, requiring
O(n2) operations. Importantly, BFGS update preserves positive definiteness. Recall this means
Bk ≻ 0 ⇒ Bk+1 ≻ 0. Equivalently, Ck ≻ 0 ⇒ Ck+1 ≻ 0

Quasi-Newton methods v § } 88

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Broyden-Fletcher-Goldfarb-Shanno update with inverse

Woodbury Formula
The Woodbury formula, a generalization of the Sherman-Morrison formula, is given by:

(A + UCV)−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1

Applied to our case, we get a rank-two update on the inverse C:

Ck+1 = Ck + (dk − Ck∆yk)dT
k

∆yT
k dk

+ dk(dk − Ck∆yk)T

∆yT
k dk

− (dk − Ck∆yk)T ∆yk

(∆yT
k dk)2 dkdT

k

Ck+1 =
(

I − dk∆yT
k

∆yT
k dk

)
Ck

(
I − ∆ykdT

k

∆yT
k dk

)
+ dkdT

k

∆yT
k dk

This formulation ensures that the BFGS update, while comprehensive, remains computationally efficient, requiring
O(n2) operations. Importantly, BFGS update preserves positive definiteness. Recall this means
Bk ≻ 0 ⇒ Bk+1 ≻ 0. Equivalently, Ck ≻ 0 ⇒ Ck+1 ≻ 0

Quasi-Newton methods v § } 88

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Code

• Open In Colab

• Comparison of quasi Newton methods
• Some practical notes about Newton method

Quasi-Newton methods v § } 89

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Quasi_Newton.ipynb
https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Newton.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Code

• Open In Colab
• Comparison of quasi Newton methods

• Some practical notes about Newton method

Quasi-Newton methods v § } 89

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Quasi_Newton.ipynb
https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Newton.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Code

• Open In Colab
• Comparison of quasi Newton methods
• Some practical notes about Newton method

Quasi-Newton methods v § } 89

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Quasi_Newton.ipynb
https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Newton.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

	Gradient Descent
	Strongly convex quadratics
	Polyak-Lojasiewicz smooth case
	Smooth convex case
	Lower bounds
	Recap
	Lower bounds
	Strongly convex quadratic problem
	Heavy ball
	Nesterov accelerated gradient
	Non-smooth problems
	Subgradient calculus
	Subgradient Method
	Applications
	Proximal operator
	Composite optimization
	Proximal Gradient Method. Convex case
	Proximal Gradient Method. Strongly convex case
	Newton method
	Quasi-Newton methods

