
Zero order methods. Line search. Gradient
Descent. Accelerated Gradient Descent

Daniil Merkulov

Applied Math for Data Science. Sberuniversity.

v § } 1

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Optimization without gradients

Optimization without gradients v § } 2

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

The curse of dimensionality for zero-order methods

min
x∈Rn

f(x)

GD: xk+1 = xk − αk∇f(xk) Zero order GD: xk+1 = xk − αkG,

where G is a 2-point or multi-point estimator of the gradient.

f(x) - smooth f(x) - smooth and convex f(x) - smooth and strongly convex

GD ∥∇f(xk)∥2 ≈ O
(1

k

)
f(xk) − f∗ ≈ O

(1
k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

L

)k
)

Zero order
GD

∥∇f(xk)∥2 ≈ O
(

n

k

)
f(xk) − f∗ ≈ O

(
n

k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

nL

)k
)

Optimization without gradients v § } 3

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

The curse of dimensionality for zero-order methods

min
x∈Rn

f(x)

GD: xk+1 = xk − αk∇f(xk) Zero order GD: xk+1 = xk − αkG,

where G is a 2-point or multi-point estimator of the gradient.

f(x) - smooth f(x) - smooth and convex f(x) - smooth and strongly convex

GD ∥∇f(xk)∥2 ≈ O
(1

k

)
f(xk) − f∗ ≈ O

(1
k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

L

)k
)

Zero order
GD

∥∇f(xk)∥2 ≈ O
(

n

k

)
f(xk) − f∗ ≈ O

(
n

k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

nL

)k
)

Optimization without gradients v § } 3

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

The curse of dimensionality for zero-order methods

min
x∈Rn

f(x)

GD: xk+1 = xk − αk∇f(xk) Zero order GD: xk+1 = xk − αkG,

where G is a 2-point or multi-point estimator of the gradient.

f(x) - smooth f(x) - smooth and convex f(x) - smooth and strongly convex

GD ∥∇f(xk)∥2 ≈ O
(1

k

)
f(xk) − f∗ ≈ O

(1
k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

L

)k
)

Zero order
GD

∥∇f(xk)∥2 ≈ O
(

n

k

)
f(xk) − f∗ ≈ O

(
n

k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

nL

)k
)

Optimization without gradients v § } 3

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Global optimization

• 3Global optimization illustration

• 3Nevergrad illustration
• 3Introduction to Optuna

Optimization without gradients v § } 4

https://colab.research.google.com/github/MerkulovDaniil/sber219/blob/main/notebooks/4_01.ipynb
https://colab.research.google.com/github/MerkulovDaniil/sber219/blob/main/notebooks/4_02.ipynb
https://colab.research.google.com/github/MerkulovDaniil/sber219/blob/main/notebooks/4_03.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Global optimization

• 3Global optimization illustration
• 3Nevergrad illustration

• 3Introduction to Optuna

Optimization without gradients v § } 4

https://colab.research.google.com/github/MerkulovDaniil/sber219/blob/main/notebooks/4_01.ipynb
https://colab.research.google.com/github/MerkulovDaniil/sber219/blob/main/notebooks/4_02.ipynb
https://colab.research.google.com/github/MerkulovDaniil/sber219/blob/main/notebooks/4_03.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Global optimization

• 3Global optimization illustration
• 3Nevergrad illustration
• 3Introduction to Optuna

Optimization without gradients v § } 4

https://colab.research.google.com/github/MerkulovDaniil/sber219/blob/main/notebooks/4_01.ipynb
https://colab.research.google.com/github/MerkulovDaniil/sber219/blob/main/notebooks/4_02.ipynb
https://colab.research.google.com/github/MerkulovDaniil/sber219/blob/main/notebooks/4_03.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Line search

Line search v § } 5

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Problem
Suppose, we have a problem of minimization of a function f(x) : R → R of scalar variable:

f(x) → min
x∈R

Sometimes, we refer to the similar problem of finding minimum on the line segment [a, b]:

f(x) → min
x∈[a,b]

ñ Example

Typical example of line search problem is selecting appropriate stepsize for gradient descent algorithm:

xk+1 = xk − α∇f(xk)
α = argmin f(xk+1)

The line search is a fundamental optimization problem that plays a crucial role in solving complex tasks. To simplify
the problem, let’s assume that the function, f(x), is unimodal, meaning it has a single peak or valley.

Line search v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Problem
Suppose, we have a problem of minimization of a function f(x) : R → R of scalar variable:

f(x) → min
x∈R

Sometimes, we refer to the similar problem of finding minimum on the line segment [a, b]:

f(x) → min
x∈[a,b]

ñ Example

Typical example of line search problem is selecting appropriate stepsize for gradient descent algorithm:

xk+1 = xk − α∇f(xk)
α = argmin f(xk+1)

The line search is a fundamental optimization problem that plays a crucial role in solving complex tasks. To simplify
the problem, let’s assume that the function, f(x), is unimodal, meaning it has a single peak or valley.

Line search v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Problem
Suppose, we have a problem of minimization of a function f(x) : R → R of scalar variable:

f(x) → min
x∈R

Sometimes, we refer to the similar problem of finding minimum on the line segment [a, b]:

f(x) → min
x∈[a,b]

ñ Example

Typical example of line search problem is selecting appropriate stepsize for gradient descent algorithm:

xk+1 = xk − α∇f(xk)
α = argmin f(xk+1)

The line search is a fundamental optimization problem that plays a crucial role in solving complex tasks. To simplify
the problem, let’s assume that the function, f(x), is unimodal, meaning it has a single peak or valley.

Line search v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Problem
Suppose, we have a problem of minimization of a function f(x) : R → R of scalar variable:

f(x) → min
x∈R

Sometimes, we refer to the similar problem of finding minimum on the line segment [a, b]:

f(x) → min
x∈[a,b]

ñ Example

Typical example of line search problem is selecting appropriate stepsize for gradient descent algorithm:

xk+1 = xk − α∇f(xk)
α = argmin f(xk+1)

The line search is a fundamental optimization problem that plays a crucial role in solving complex tasks. To simplify
the problem, let’s assume that the function, f(x), is unimodal, meaning it has a single peak or valley.

Line search v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Unimodal function

ñ Definition

Function f(x) is called unimodal on [a, b], if there is x∗ ∈ [a, b], that f(x1) > f(x2) ∀a ≤ x1 < x2 < x∗
and f(x1) < f(x2) ∀x∗ < x1 < x2 ≤ b

Figure 1: Examples of unimodal functions

Line search v § } 7

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Unimodal function

ñ Definition

Function f(x) is called unimodal on [a, b], if there is x∗ ∈ [a, b], that f(x1) > f(x2) ∀a ≤ x1 < x2 < x∗
and f(x1) < f(x2) ∀x∗ < x1 < x2 ≤ b

Figure 1: Examples of unimodal functions

Line search v § } 7

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key property of unimodal functions
Let f(x) be unimodal function on [a, b]. Than if x1 < x2 ∈ [a, b], then:

• if f(x1) ≤ f(x2) → x∗ ∈ [a, x2]

• if f(x1) ≥ f(x2) → x∗ ∈ [x1, b]

Proof Let’s prove the first statement. On the contrary, suppose that f(x1) ≤ f(x2), but x∗ > x2. Then necessarily
x1 < x2 < x∗ and by the unimodality of the function f(x) the inequality: f(x1) > f(x2) must be satisfied. We
have obtained a contradiction.

Line search v § } 8

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key property of unimodal functions
Let f(x) be unimodal function on [a, b]. Than if x1 < x2 ∈ [a, b], then:

• if f(x1) ≤ f(x2) → x∗ ∈ [a, x2]
• if f(x1) ≥ f(x2) → x∗ ∈ [x1, b]

Proof Let’s prove the first statement. On the contrary, suppose that f(x1) ≤ f(x2), but x∗ > x2. Then necessarily
x1 < x2 < x∗ and by the unimodality of the function f(x) the inequality: f(x1) > f(x2) must be satisfied. We
have obtained a contradiction.

Line search v § } 8

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key property of unimodal functions
Let f(x) be unimodal function on [a, b]. Than if x1 < x2 ∈ [a, b], then:

• if f(x1) ≤ f(x2) → x∗ ∈ [a, x2]
• if f(x1) ≥ f(x2) → x∗ ∈ [x1, b]

Proof Let’s prove the first statement. On the contrary, suppose that f(x1) ≤ f(x2), but x∗ > x2. Then necessarily
x1 < x2 < x∗ and by the unimodality of the function f(x) the inequality: f(x1) > f(x2) must be satisfied. We
have obtained a contradiction.

Line search v § } 8

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key property of unimodal functions
Let f(x) be unimodal function on [a, b]. Than if x1 < x2 ∈ [a, b], then:

• if f(x1) ≤ f(x2) → x∗ ∈ [a, x2]
• if f(x1) ≥ f(x2) → x∗ ∈ [x1, b]

Proof Let’s prove the first statement. On the contrary, suppose that f(x1) ≤ f(x2), but x∗ > x2. Then necessarily
x1 < x2 < x∗ and by the unimodality of the function f(x) the inequality: f(x1) > f(x2) must be satisfied. We
have obtained a contradiction.

Line search v § } 8

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key property of unimodal functions
Let f(x) be unimodal function on [a, b]. Than if x1 < x2 ∈ [a, b], then:

• if f(x1) ≤ f(x2) → x∗ ∈ [a, x2]
• if f(x1) ≥ f(x2) → x∗ ∈ [x1, b]

Proof Let’s prove the first statement. On the contrary, suppose that f(x1) ≤ f(x2), but x∗ > x2. Then necessarily
x1 < x2 < x∗ and by the unimodality of the function f(x) the inequality: f(x1) > f(x2) must be satisfied. We
have obtained a contradiction.

Line search v § } 8

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key property of unimodal functions
Let f(x) be unimodal function on [a, b]. Than if x1 < x2 ∈ [a, b], then:

• if f(x1) ≤ f(x2) → x∗ ∈ [a, x2]
• if f(x1) ≥ f(x2) → x∗ ∈ [x1, b]

Proof Let’s prove the first statement. On the contrary, suppose that f(x1) ≤ f(x2), but x∗ > x2. Then necessarily
x1 < x2 < x∗ and by the unimodality of the function f(x) the inequality: f(x1) > f(x2) must be satisfied. We
have obtained a contradiction.

Line search v § } 8

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Key property of unimodal functions
Let f(x) be unimodal function on [a, b]. Than if x1 < x2 ∈ [a, b], then:

• if f(x1) ≤ f(x2) → x∗ ∈ [a, x2]
• if f(x1) ≥ f(x2) → x∗ ∈ [x1, b]

Proof Let’s prove the first statement. On the contrary, suppose that f(x1) ≤ f(x2), but x∗ > x2. Then necessarily
x1 < x2 < x∗ and by the unimodality of the function f(x) the inequality: f(x1) > f(x2) must be satisfied. We
have obtained a contradiction.

Line search v § } 8

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method
We aim to solve the following problem:

f(x) → min
x∈[a,b]

We divide a segment into two equal parts and choose the
one that contains the solution of the problem using the
values of functions, based on the key property described
above. Our goal after one iteration of the method is to
halve the solution region.

Figure 2: Dichotomy method for unimodal function

Line search v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method
We measure the function value at the middle of the line
segment

Figure 3: Dichotomy method for unimodal function

Line search v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method
In order to apply the key property we perform another
measurement.

Figure 4: Dichotomy method for unimodal function

Line search v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method
We select the target line segment. And in this case we are
lucky since we already halved the solution region. But
that is not always the case.

Figure 5: Dichotomy method for unimodal function

Line search v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method
Let’s consider another unimodal function.

Figure 6: Dichotomy method for unimodal function

Line search v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method
Measure the middle of the line segment.

Figure 7: Dichotomy method for unimodal function

Line search v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method
Get another measurement.

Figure 8: Dichotomy method for unimodal function

Line search v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method
Select the target line segment. You can clearly see, that
the obtained line segment is not the half of the initial one.
It is 3

4 (b − a). So to fix it we need another step of the
algorithm.

Figure 9: Dichotomy method for unimodal function

Line search v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method
After another additional measurement, we will surely get
2
3

3
4 (b − a) = 1

2 (b − a)

Figure 10: Dichotomy method for unimodal function

Line search v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method
To sum it up, each subsequent iteration will require at
most two function value measurements.

Figure 11: Dichotomy method for unimodal function

Line search v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method. Algorithm

def binary_search(f, a, b, epsilon):
c = (a + b) / 2
while abs(b - a) > epsilon:

y = (a + c) / 2.0
if f(y) <= f(c):

b = c
c = y

else:
z = (b + c) / 2.0
if f(c) <= f(z):

a = y
b = z

else:
a = c
c = z

return c

Line search v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method. Bounds
The length of the line segment on k + 1-th iteration:

∆k+1 = bk+1 − ak+1 = 1
2k

(b − a)

For unimodal functions, this holds if we select the middle of a segment as an output of the iteration xk+1:

|xk+1 − x∗| ≤ ∆k+1

2 ≤ 1
2k+1 (b − a) ≤ (0.5)k+1 · (b − a)

Note, that at each iteration we ask oracle no more, than 2 times, so the number of function evaluations is N = 2 · k,
which implies:

|xk+1 − x∗| ≤ (0.5)
N
2 +1 · (b − a) ≤ (0.707)N b − a

2

By marking the right side of the last inequality for ε, we get the number of method iterations needed to achieve ε
accuracy:

K =
⌈

log2
b − a

ε
− 1

⌉

Line search v § } 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method. Bounds
The length of the line segment on k + 1-th iteration:

∆k+1 = bk+1 − ak+1 = 1
2k

(b − a)

For unimodal functions, this holds if we select the middle of a segment as an output of the iteration xk+1:

|xk+1 − x∗| ≤ ∆k+1

2 ≤ 1
2k+1 (b − a) ≤ (0.5)k+1 · (b − a)

Note, that at each iteration we ask oracle no more, than 2 times, so the number of function evaluations is N = 2 · k,
which implies:

|xk+1 − x∗| ≤ (0.5)
N
2 +1 · (b − a) ≤ (0.707)N b − a

2

By marking the right side of the last inequality for ε, we get the number of method iterations needed to achieve ε
accuracy:

K =
⌈

log2
b − a

ε
− 1

⌉

Line search v § } 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method. Bounds
The length of the line segment on k + 1-th iteration:

∆k+1 = bk+1 − ak+1 = 1
2k

(b − a)

For unimodal functions, this holds if we select the middle of a segment as an output of the iteration xk+1:

|xk+1 − x∗| ≤ ∆k+1

2 ≤ 1
2k+1 (b − a) ≤ (0.5)k+1 · (b − a)

Note, that at each iteration we ask oracle no more, than 2 times, so the number of function evaluations is N = 2 · k,
which implies:

|xk+1 − x∗| ≤ (0.5)
N
2 +1 · (b − a) ≤ (0.707)N b − a

2

By marking the right side of the last inequality for ε, we get the number of method iterations needed to achieve ε
accuracy:

K =
⌈

log2
b − a

ε
− 1

⌉

Line search v § } 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Dichotomy method. Bounds
The length of the line segment on k + 1-th iteration:

∆k+1 = bk+1 − ak+1 = 1
2k

(b − a)

For unimodal functions, this holds if we select the middle of a segment as an output of the iteration xk+1:

|xk+1 − x∗| ≤ ∆k+1

2 ≤ 1
2k+1 (b − a) ≤ (0.5)k+1 · (b − a)

Note, that at each iteration we ask oracle no more, than 2 times, so the number of function evaluations is N = 2 · k,
which implies:

|xk+1 − x∗| ≤ (0.5)
N
2 +1 · (b − a) ≤ (0.707)N b − a

2

By marking the right side of the last inequality for ε, we get the number of method iterations needed to achieve ε
accuracy:

K =
⌈

log2
b − a

ε
− 1

⌉
Line search v § } 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Golden selection

The idea is quite similar to the dichotomy method. There are two golden points on the line segment (left and right)
and the insightful idea is, that on the next iteration one of the points will remain the golden point.

Figure 12: Key idea, that allows us to decrease function evaluations

Line search v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Golden selection. Algorithm

def golden_search(f, a, b, epsilon):
tau = (sqrt(5) + 1) / 2
y = a + (b - a) / tau**2
z = a + (b - a) / tau
while b - a > epsilon:

if f(y) <= f(z):
b = z
z = y
y = a + (b - a) / tau**2

else:
a = y
y = z
z = a + (b - a) / tau

return (a + b) / 2

Line search v § } 13

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Golden selection. Bounds

|xk+1 − x∗| ≤ bk+1 − ak+1 =
(1

τ

)N−1
(b − a) ≈ 0.618k(b − a),

where τ =
√

5+1
2 .

• The geometric progression constant more than the dichotomy method - 0.618 worse than 0.5

• The number of function calls is less than for the dichotomy method - 0.707 worse than 0.618 - (for each
iteration of the dichotomy method, except for the first one, the function is calculated no more than 2 times,
and for the gold method - no more than one)

Line search v § } 14

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Golden selection. Bounds

|xk+1 − x∗| ≤ bk+1 − ak+1 =
(1

τ

)N−1
(b − a) ≈ 0.618k(b − a),

where τ =
√

5+1
2 .

• The geometric progression constant more than the dichotomy method - 0.618 worse than 0.5
• The number of function calls is less than for the dichotomy method - 0.707 worse than 0.618 - (for each

iteration of the dichotomy method, except for the first one, the function is calculated no more than 2 times,
and for the gold method - no more than one)

Line search v § } 14

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Successive parabolic interpolation

Sampling 3 points of a function determines unique parabola. Using this information we will go directly to its
minimum. Suppose, we have 3 points x1 < x2 < x3 such that line segment [x1, x3] contains minimum of a function
f(x). Then, we need to solve the following system of equations:

ax2
i + bxi + c = fi = f(xi), i = 1, 2, 3

Note, that this system is linear, since we need to solve it on a, b, c. Minimum of this parabola will be calculated as:

u = − b

2a
= x2 − (x2 − x1)2(f2 − f3) − (x2 − x3)2(f2 − f1)

2 [(x2 − x1)(f2 − f3) − (x2 − x3)(f2 − f1)]

Note, that if f2 < f1, f2 < f3, than u will lie in [x1, x3]

Line search v § } 15

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Successive parabolic interpolation

Sampling 3 points of a function determines unique parabola. Using this information we will go directly to its
minimum. Suppose, we have 3 points x1 < x2 < x3 such that line segment [x1, x3] contains minimum of a function
f(x). Then, we need to solve the following system of equations:

ax2
i + bxi + c = fi = f(xi), i = 1, 2, 3

Note, that this system is linear, since we need to solve it on a, b, c. Minimum of this parabola will be calculated as:

u = − b

2a
= x2 − (x2 − x1)2(f2 − f3) − (x2 − x3)2(f2 − f1)

2 [(x2 − x1)(f2 − f3) − (x2 − x3)(f2 − f1)]

Note, that if f2 < f1, f2 < f3, than u will lie in [x1, x3]

Line search v § } 15

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Successive parabolic interpolation

Sampling 3 points of a function determines unique parabola. Using this information we will go directly to its
minimum. Suppose, we have 3 points x1 < x2 < x3 such that line segment [x1, x3] contains minimum of a function
f(x). Then, we need to solve the following system of equations:

ax2
i + bxi + c = fi = f(xi), i = 1, 2, 3

Note, that this system is linear, since we need to solve it on a, b, c. Minimum of this parabola will be calculated as:

u = − b

2a
= x2 − (x2 − x1)2(f2 − f3) − (x2 − x3)2(f2 − f1)

2 [(x2 − x1)(f2 − f3) − (x2 − x3)(f2 − f1)]

Note, that if f2 < f1, f2 < f3, than u will lie in [x1, x3]

Line search v § } 15

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Successive parabolic interpolation. Algorithm 1

def parabola_search(f, x1, x2, x3, epsilon):
f1, f2, f3 = f(x1), f(x2), f(x3)
while x3 - x1 > epsilon:

u = x2 - ((x2 - x1)**2*(f2 - f3) - (x2 - x3)**2*(f2 - f1))/(2*((x2 - x1)*(f2 - f3) - (x2 - x3)*(f2 - f1)))
fu = f(u)

if x2 <= u:
if f2 <= fu:

x1, x2, x3 = x1, x2, u
f1, f2, f3 = f1, f2, fu

else:
x1, x2, x3 = x2, u, x3
f1, f2, f3 = f2, fu, f3

else:
if fu <= f2:

x1, x2, x3 = x1, u, x2
f1, f2, f3 = f1, fu, f2

else:
x1, x2, x3 = u, x2, x3
f1, f2, f3 = fu, f2, f3

return (x1 + x3) / 2

1The convergence of this method is superlinear, but local, which means, that you can take profit from using this method only near some
neighbour of optimum. Here is the proof of superlinear convergence of order 1.32.

Line search v § } 16

https://people.math.sc.edu/kellerlv/Quadratic_Interpolation.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Inexact line search
Sometimes it is enough to find a solution, which will
approximately solve out problem. This is very typical
scenario for mentioned stepsize selection problem

xk+1 = xk − α∇f(xk)
α = argmin f(xk+1)

Consider a scalar function ϕ(α) at a point xk:

ϕ(α) = f(xk − α∇f(xk)), α ≥ 0

The first-order approximation of ϕ(α) near α = 0 is:

ϕ(α) ≈ f(xk) − α∇f(xk)⊤∇f(xk)

Figure 13: Illustration of Taylor approximation of ϕI
0(α)

Line search v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Inexact line search
Sometimes it is enough to find a solution, which will
approximately solve out problem. This is very typical
scenario for mentioned stepsize selection problem

xk+1 = xk − α∇f(xk)
α = argmin f(xk+1)

Consider a scalar function ϕ(α) at a point xk:

ϕ(α) = f(xk − α∇f(xk)), α ≥ 0

The first-order approximation of ϕ(α) near α = 0 is:

ϕ(α) ≈ f(xk) − α∇f(xk)⊤∇f(xk)

Figure 13: Illustration of Taylor approximation of ϕI
0(α)

Line search v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Inexact line search
Sometimes it is enough to find a solution, which will
approximately solve out problem. This is very typical
scenario for mentioned stepsize selection problem

xk+1 = xk − α∇f(xk)
α = argmin f(xk+1)

Consider a scalar function ϕ(α) at a point xk:

ϕ(α) = f(xk − α∇f(xk)), α ≥ 0

The first-order approximation of ϕ(α) near α = 0 is:

ϕ(α) ≈ f(xk) − α∇f(xk)⊤∇f(xk)

Figure 13: Illustration of Taylor approximation of ϕI
0(α)

Line search v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Inexact line search. Sufficient Decrease
The inexact line search condition, known as the Armijo
condition, states that α should provide sufficient decrease
in the function f , satisfying:

f(xk − α∇f(xk)) ≤ f(xk) − c1 · α∇f(xk)⊤∇f(xk)

for some constant c1 ∈ (0, 1). Note that setting c1 = 1
corresponds to the first-order Taylor approximation of
ϕ(α). However, this condition can accept very small
values of α, potentially slowing down the solution process.
Typically, c1 ≈ 10−4 is used in practice.

ñ Example

If f(x) represents a cost function in an optimization
problem, choosing an appropriate c1 value is crucial.
For instance, in a machine learning model training
scenario, an improper c1 might lead to either very
slow convergence or missing the minimum.

Figure 14: Illustration of sufficient decrease condition with
coefficient c1

Line search v § } 18

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Inexact line search. Sufficient Decrease
The inexact line search condition, known as the Armijo
condition, states that α should provide sufficient decrease
in the function f , satisfying:

f(xk − α∇f(xk)) ≤ f(xk) − c1 · α∇f(xk)⊤∇f(xk)

for some constant c1 ∈ (0, 1). Note that setting c1 = 1
corresponds to the first-order Taylor approximation of
ϕ(α). However, this condition can accept very small
values of α, potentially slowing down the solution process.
Typically, c1 ≈ 10−4 is used in practice.

ñ Example

If f(x) represents a cost function in an optimization
problem, choosing an appropriate c1 value is crucial.
For instance, in a machine learning model training
scenario, an improper c1 might lead to either very
slow convergence or missing the minimum.

Figure 14: Illustration of sufficient decrease condition with
coefficient c1

Line search v § } 18

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Inexact line search. Sufficient Decrease
The inexact line search condition, known as the Armijo
condition, states that α should provide sufficient decrease
in the function f , satisfying:

f(xk − α∇f(xk)) ≤ f(xk) − c1 · α∇f(xk)⊤∇f(xk)

for some constant c1 ∈ (0, 1). Note that setting c1 = 1
corresponds to the first-order Taylor approximation of
ϕ(α). However, this condition can accept very small
values of α, potentially slowing down the solution process.
Typically, c1 ≈ 10−4 is used in practice.

ñ Example

If f(x) represents a cost function in an optimization
problem, choosing an appropriate c1 value is crucial.
For instance, in a machine learning model training
scenario, an improper c1 might lead to either very
slow convergence or missing the minimum.

Figure 14: Illustration of sufficient decrease condition with
coefficient c1

Line search v § } 18

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Inexact line search. Goldstein Conditions
Consider two linear scalar functions ϕ1(α) and ϕ2(α):

ϕ1(α) = f(xk) − c1α∥∇f(xk)∥2

ϕ2(α) = f(xk) − c2α∥∇f(xk)∥2

The Goldstein-Armijo conditions locate the function ϕ(α)
between ϕ1(α) and ϕ2(α). Typically, c1 = ρ and
c2 = 1 − ρ, with ρ ∈ (0.5, 1).

Figure 15: Illustration of Goldstein conditions

Line search v § } 19

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Inexact line search. Goldstein Conditions
Consider two linear scalar functions ϕ1(α) and ϕ2(α):

ϕ1(α) = f(xk) − c1α∥∇f(xk)∥2

ϕ2(α) = f(xk) − c2α∥∇f(xk)∥2

The Goldstein-Armijo conditions locate the function ϕ(α)
between ϕ1(α) and ϕ2(α). Typically, c1 = ρ and
c2 = 1 − ρ, with ρ ∈ (0.5, 1).

Figure 15: Illustration of Goldstein conditions

Line search v § } 19

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Inexact line search. Curvature Condition
To avoid excessively short steps, we introduce a second
criterion:

−∇f(xk − α∇f(xk))⊤∇f(xk) ≥ c2∇f(xk)⊤(−∇f(xk))

for some c2 ∈ (c1, 1). Here, c1 is from the Armijo
condition. The left-hand side is the derivative ∇αϕ(α),
ensuring that the slope of ϕ(α) at the target point is at
least c2 times the initial slope ∇αϕ(α)(0). Commonly,
c2 ≈ 0.9 is used for Newton or quasi-Newton methods.
Together, the sufficient decrease and curvature conditions
form the Wolfe conditions.

Figure 16: Illustration of curvature condition

Line search v § } 20

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Inexact line search. Curvature Condition
To avoid excessively short steps, we introduce a second
criterion:

−∇f(xk − α∇f(xk))⊤∇f(xk) ≥ c2∇f(xk)⊤(−∇f(xk))

for some c2 ∈ (c1, 1). Here, c1 is from the Armijo
condition. The left-hand side is the derivative ∇αϕ(α),
ensuring that the slope of ϕ(α) at the target point is at
least c2 times the initial slope ∇αϕ(α)(0). Commonly,
c2 ≈ 0.9 is used for Newton or quasi-Newton methods.
Together, the sufficient decrease and curvature conditions
form the Wolfe conditions.

Figure 16: Illustration of curvature condition

Line search v § } 20

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Inexact line search. Wolfe Condition

−∇f(xk − α∇f(xk))⊤∇f(xk) ≥ c2∇f(xk)⊤(−∇f(xk))

Together, the sufficient decrease and curvature conditions
form the Wolfe conditions.

с

Figure 17: Illustration of Wolfe condition

Line search v § } 21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backtracking Line Search
Backtracking line search is a technique to find a step size that satisfies the Armijo condition, Goldstein conditions, or
other criteria of inexact line search. It begins with a relatively large step size and iteratively scales it down until a
condition is met.

Algorithm:

1. Choose an initial step size, α0, and parameters β ∈ (0, 1) and c1 ∈ (0, 1).
2. Check if the chosen step size satisfies the chosen condition (e.g., Armijo condition).
3. If the condition is satisfied, stop; else, set α := βα and repeat step 2.

The step size α is updated as

αk+1 := βαk

in each iteration until the chosen condition is satisfied.

ñ Example

In machine learning model training, the backtracking line search can be used to adjust the learning rate. If the
loss doesn’t decrease sufficiently, the learning rate is reduced multiplicatively until the Armijo condition is met.

Line search v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backtracking Line Search
Backtracking line search is a technique to find a step size that satisfies the Armijo condition, Goldstein conditions, or
other criteria of inexact line search. It begins with a relatively large step size and iteratively scales it down until a
condition is met.

Algorithm:
1. Choose an initial step size, α0, and parameters β ∈ (0, 1) and c1 ∈ (0, 1).

2. Check if the chosen step size satisfies the chosen condition (e.g., Armijo condition).
3. If the condition is satisfied, stop; else, set α := βα and repeat step 2.

The step size α is updated as

αk+1 := βαk

in each iteration until the chosen condition is satisfied.

ñ Example

In machine learning model training, the backtracking line search can be used to adjust the learning rate. If the
loss doesn’t decrease sufficiently, the learning rate is reduced multiplicatively until the Armijo condition is met.

Line search v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backtracking Line Search
Backtracking line search is a technique to find a step size that satisfies the Armijo condition, Goldstein conditions, or
other criteria of inexact line search. It begins with a relatively large step size and iteratively scales it down until a
condition is met.

Algorithm:
1. Choose an initial step size, α0, and parameters β ∈ (0, 1) and c1 ∈ (0, 1).
2. Check if the chosen step size satisfies the chosen condition (e.g., Armijo condition).

3. If the condition is satisfied, stop; else, set α := βα and repeat step 2.
The step size α is updated as

αk+1 := βαk

in each iteration until the chosen condition is satisfied.

ñ Example

In machine learning model training, the backtracking line search can be used to adjust the learning rate. If the
loss doesn’t decrease sufficiently, the learning rate is reduced multiplicatively until the Armijo condition is met.

Line search v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backtracking Line Search
Backtracking line search is a technique to find a step size that satisfies the Armijo condition, Goldstein conditions, or
other criteria of inexact line search. It begins with a relatively large step size and iteratively scales it down until a
condition is met.

Algorithm:
1. Choose an initial step size, α0, and parameters β ∈ (0, 1) and c1 ∈ (0, 1).
2. Check if the chosen step size satisfies the chosen condition (e.g., Armijo condition).
3. If the condition is satisfied, stop; else, set α := βα and repeat step 2.

The step size α is updated as

αk+1 := βαk

in each iteration until the chosen condition is satisfied.

ñ Example

In machine learning model training, the backtracking line search can be used to adjust the learning rate. If the
loss doesn’t decrease sufficiently, the learning rate is reduced multiplicatively until the Armijo condition is met.

Line search v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backtracking Line Search
Backtracking line search is a technique to find a step size that satisfies the Armijo condition, Goldstein conditions, or
other criteria of inexact line search. It begins with a relatively large step size and iteratively scales it down until a
condition is met.

Algorithm:
1. Choose an initial step size, α0, and parameters β ∈ (0, 1) and c1 ∈ (0, 1).
2. Check if the chosen step size satisfies the chosen condition (e.g., Armijo condition).
3. If the condition is satisfied, stop; else, set α := βα and repeat step 2.

The step size α is updated as

αk+1 := βαk

in each iteration until the chosen condition is satisfied.

ñ Example

In machine learning model training, the backtracking line search can be used to adjust the learning rate. If the
loss doesn’t decrease sufficiently, the learning rate is reduced multiplicatively until the Armijo condition is met.

Line search v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backtracking Line Search
Backtracking line search is a technique to find a step size that satisfies the Armijo condition, Goldstein conditions, or
other criteria of inexact line search. It begins with a relatively large step size and iteratively scales it down until a
condition is met.

Algorithm:
1. Choose an initial step size, α0, and parameters β ∈ (0, 1) and c1 ∈ (0, 1).
2. Check if the chosen step size satisfies the chosen condition (e.g., Armijo condition).
3. If the condition is satisfied, stop; else, set α := βα and repeat step 2.

The step size α is updated as

αk+1 := βαk

in each iteration until the chosen condition is satisfied.

ñ Example

In machine learning model training, the backtracking line search can be used to adjust the learning rate. If the
loss doesn’t decrease sufficiently, the learning rate is reduced multiplicatively until the Armijo condition is met.

Line search v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Numerical illustration

0 1 2 3 4 5 6
x

0.70

0.75

0.80

0.85

0.90

0.95

1.00

f(x
)

0 20 40 60 80
Iteration

10 8

10 6

10 4

10 2

100

Er
ro

r

Random
Binary
Golden
Parabolic

Figure 18: Comparison of different line search algorithms

Open In Colab ♣

Line search v § } 23

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Line_search.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient Descent

Gradient Descent v § } 24

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
h, ∥h∥2 = 1:

f(x + αh) = f(x) + α⟨f ′(x), h⟩ + o(α)

We want h to be a decreasing direction:

f(x + αh) < f(x)

f(x) + α⟨f ′(x), h⟩ + o(α) < f(x)

and going to the limit at α → 0:

⟨f ′(x), h⟩ ≤ 0

Also from Cauchy–Bunyakovsky–Schwarz inequality:

|⟨f ′(x), h⟩| ≤ ∥f ′(x)∥2∥h∥2

⟨f ′(x), h⟩ ≥ −∥f ′(x)∥2∥h∥2 = −∥f ′(x)∥2

Thus, the direction of the antigradient

h = − f ′(x)
∥f ′(x)∥2

gives the direction of the steepest local decreasing of the function f .
The result of this method is

xk+1 = xk − αf ′(xk)

Gradient Descent v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
h, ∥h∥2 = 1:

f(x + αh) = f(x) + α⟨f ′(x), h⟩ + o(α)

We want h to be a decreasing direction:

f(x + αh) < f(x)

f(x) + α⟨f ′(x), h⟩ + o(α) < f(x)

and going to the limit at α → 0:

⟨f ′(x), h⟩ ≤ 0

Also from Cauchy–Bunyakovsky–Schwarz inequality:

|⟨f ′(x), h⟩| ≤ ∥f ′(x)∥2∥h∥2

⟨f ′(x), h⟩ ≥ −∥f ′(x)∥2∥h∥2 = −∥f ′(x)∥2

Thus, the direction of the antigradient

h = − f ′(x)
∥f ′(x)∥2

gives the direction of the steepest local decreasing of the function f .
The result of this method is

xk+1 = xk − αf ′(xk)

Gradient Descent v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
h, ∥h∥2 = 1:

f(x + αh) = f(x) + α⟨f ′(x), h⟩ + o(α)

We want h to be a decreasing direction:

f(x + αh) < f(x)

f(x) + α⟨f ′(x), h⟩ + o(α) < f(x)

and going to the limit at α → 0:

⟨f ′(x), h⟩ ≤ 0

Also from Cauchy–Bunyakovsky–Schwarz inequality:

|⟨f ′(x), h⟩| ≤ ∥f ′(x)∥2∥h∥2

⟨f ′(x), h⟩ ≥ −∥f ′(x)∥2∥h∥2 = −∥f ′(x)∥2

Thus, the direction of the antigradient

h = − f ′(x)
∥f ′(x)∥2

gives the direction of the steepest local decreasing of the function f .
The result of this method is

xk+1 = xk − αf ′(xk)

Gradient Descent v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
h, ∥h∥2 = 1:

f(x + αh) = f(x) + α⟨f ′(x), h⟩ + o(α)

We want h to be a decreasing direction:

f(x + αh) < f(x)

f(x) + α⟨f ′(x), h⟩ + o(α) < f(x)

and going to the limit at α → 0:

⟨f ′(x), h⟩ ≤ 0

Also from Cauchy–Bunyakovsky–Schwarz inequality:

|⟨f ′(x), h⟩| ≤ ∥f ′(x)∥2∥h∥2

⟨f ′(x), h⟩ ≥ −∥f ′(x)∥2∥h∥2 = −∥f ′(x)∥2

Thus, the direction of the antigradient

h = − f ′(x)
∥f ′(x)∥2

gives the direction of the steepest local decreasing of the function f .
The result of this method is

xk+1 = xk − αf ′(xk)

Gradient Descent v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
h, ∥h∥2 = 1:

f(x + αh) = f(x) + α⟨f ′(x), h⟩ + o(α)

We want h to be a decreasing direction:

f(x + αh) < f(x)

f(x) + α⟨f ′(x), h⟩ + o(α) < f(x)

and going to the limit at α → 0:

⟨f ′(x), h⟩ ≤ 0

Also from Cauchy–Bunyakovsky–Schwarz inequality:

|⟨f ′(x), h⟩| ≤ ∥f ′(x)∥2∥h∥2

⟨f ′(x), h⟩ ≥ −∥f ′(x)∥2∥h∥2 = −∥f ′(x)∥2

Thus, the direction of the antigradient

h = − f ′(x)
∥f ′(x)∥2

gives the direction of the steepest local decreasing of the function f .
The result of this method is

xk+1 = xk − αf ′(xk)

Gradient Descent v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
h, ∥h∥2 = 1:

f(x + αh) = f(x) + α⟨f ′(x), h⟩ + o(α)

We want h to be a decreasing direction:

f(x + αh) < f(x)

f(x) + α⟨f ′(x), h⟩ + o(α) < f(x)

and going to the limit at α → 0:

⟨f ′(x), h⟩ ≤ 0

Also from Cauchy–Bunyakovsky–Schwarz inequality:

|⟨f ′(x), h⟩| ≤ ∥f ′(x)∥2∥h∥2

⟨f ′(x), h⟩ ≥ −∥f ′(x)∥2∥h∥2 = −∥f ′(x)∥2

Thus, the direction of the antigradient

h = − f ′(x)
∥f ′(x)∥2

gives the direction of the steepest local decreasing of the function f .

The result of this method is

xk+1 = xk − αf ′(xk)

Gradient Descent v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
h, ∥h∥2 = 1:

f(x + αh) = f(x) + α⟨f ′(x), h⟩ + o(α)

We want h to be a decreasing direction:

f(x + αh) < f(x)

f(x) + α⟨f ′(x), h⟩ + o(α) < f(x)

and going to the limit at α → 0:

⟨f ′(x), h⟩ ≤ 0

Also from Cauchy–Bunyakovsky–Schwarz inequality:

|⟨f ′(x), h⟩| ≤ ∥f ′(x)∥2∥h∥2

⟨f ′(x), h⟩ ≥ −∥f ′(x)∥2∥h∥2 = −∥f ′(x)∥2

Thus, the direction of the antigradient

h = − f ′(x)
∥f ′(x)∥2

gives the direction of the steepest local decreasing of the function f .
The result of this method is

xk+1 = xk − αf ′(xk)

Gradient Descent v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence of Gradient Descent algorithm

Heavily depends on the choice of the learning rate α:

Gradient Descent v § } 26

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/GD_2d_visualization.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Exact line search aka steepest descent
αk = arg min

α∈R+
f(xk+1) = arg min

α∈R+
f(xk − α∇f(xk))

More theoretical than practical approach. It also allows you to analyze the convergence, but
often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is
orthogonal to the previous one:

αk = arg min
α∈R+

f(xk − α∇f(xk))

Optimality conditions:

∇f(xk+1)⊤∇f(xk) = 0

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent with step 3.5e-01
Steepest Descent
Start Point
Optimal Point

0 5 10 15 20 25 30
Iterations

10 26

10 22

10 18

10 14

10 10

10 6

10 2

102

Fu
nc

tio
n

va
lu

e
(lo

g
sc

al
e)

Convergence of Function Value

Gradient Descent with step 3.5e-01
Steepest Descent

Figure 19: Steepest
Descent

Open In Colab ♣

Gradient Descent v § } 27

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Steepest_descent.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Exact line search aka steepest descent
αk = arg min

α∈R+
f(xk+1) = arg min

α∈R+
f(xk − α∇f(xk))

More theoretical than practical approach. It also allows you to analyze the convergence, but
often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is
orthogonal to the previous one:

αk = arg min
α∈R+

f(xk − α∇f(xk))

Optimality conditions:

∇f(xk+1)⊤∇f(xk) = 0

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent with step 3.5e-01
Steepest Descent
Start Point
Optimal Point

0 5 10 15 20 25 30
Iterations

10 26

10 22

10 18

10 14

10 10

10 6

10 2

102

Fu
nc

tio
n

va
lu

e
(lo

g
sc

al
e)

Convergence of Function Value

Gradient Descent with step 3.5e-01
Steepest Descent

Figure 19: Steepest
Descent

Open In Colab ♣

Gradient Descent v § } 27

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Steepest_descent.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Exact line search aka steepest descent
αk = arg min

α∈R+
f(xk+1) = arg min

α∈R+
f(xk − α∇f(xk))

More theoretical than practical approach. It also allows you to analyze the convergence, but
often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is
orthogonal to the previous one:

αk = arg min
α∈R+

f(xk − α∇f(xk))

Optimality conditions:

∇f(xk+1)⊤∇f(xk) = 0

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent with step 3.5e-01
Steepest Descent
Start Point
Optimal Point

0 5 10 15 20 25 30
Iterations

10 26

10 22

10 18

10 14

10 10

10 6

10 2

102

Fu
nc

tio
n

va
lu

e
(lo

g
sc

al
e)

Convergence of Function Value

Gradient Descent with step 3.5e-01
Steepest Descent

Figure 19: Steepest
Descent

Open In Colab ♣
Gradient Descent v § } 27

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Steepest_descent.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Strongly convex quadratics

Strongly convex quadratics v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates to make an analysis a little bit
easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of initial
function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratics v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk)

= xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1

− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1

− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α)

= min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0

f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk) = xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to tune α to choose the best (lowest)
convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Strongly convex quadratics v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis

So, we have a linear convergence in the domain with rate κ−1
κ+1 = 1 − 2

κ+1 , where κ = L
µ

is sometimes called
condition number of the quadratic problem.

κ ρ Iterations to decrease domain gap 10 times Iterations to decrease function gap 10 times
1.1 0.05 1 1
2 0.33 3 2
5 0.67 6 3
10 0.82 12 6
50 0.96 58 29
100 0.98 116 58
500 0.996 576 288
1000 0.998 1152 576

Strongly convex quadratics v § } 31

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Polyak-Lojasiewicz smooth case

Polyak-Lojasiewicz smooth case v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Polyak-Lojasiewicz condition. Linear convergence of gradient descent without
convexity
PL inequality holds if the following condition is satisfied for some µ > 0,

∥∇f(x)∥2 ≥ 2µ(f(x) − f∗) ∀x

It is interesting, that the Gradient Descent algorithm might converge linearly even without convexity.

The following functions satisfy the PL condition but are not convex. 3Link to the code

f(x) = x2 + 3 sin2(x)

3 2 1 0 1 2 3
x

0

2

4

6

8

f(x
)

Function, that satisfies
 Polyak- Lojasiewicz condition

f(x) = x2 + 3sin2(x)

Figure 20: PL function

f(x, y) = (y − sin x)2

2

x

4
2

0
2

4

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

f(x
, y

)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Non-convex PL function

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 21: PL function

Polyak-Lojasiewicz smooth case v § } 33

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/PL_function.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Polyak-Lojasiewicz condition. Linear convergence of gradient descent without
convexity
PL inequality holds if the following condition is satisfied for some µ > 0,

∥∇f(x)∥2 ≥ 2µ(f(x) − f∗) ∀x

It is interesting, that the Gradient Descent algorithm might converge linearly even without convexity.

The following functions satisfy the PL condition but are not convex. 3Link to the code

f(x) = x2 + 3 sin2(x)

3 2 1 0 1 2 3
x

0

2

4

6

8

f(x
)

Function, that satisfies
 Polyak- Lojasiewicz condition

f(x) = x2 + 3sin2(x)

Figure 20: PL function

f(x, y) = (y − sin x)2

2

x

4
2

0
2

4

y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

f(x
, y

)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Non-convex PL function

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 21: PL function

Polyak-Lojasiewicz smooth case v § } 33

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/PL_function.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Convergence analysis

ñ Theorem

Consider the Problem

f(x) → min
x∈Rd

and assume that f is µ-Polyak-Lojasiewicz and L-smooth, for some L ≥ µ > 0.
Consider (xk)k∈N a sequence generated by the gradient descent constant stepsize algorithm, with a stepsize
satisfying 0 < α ≤ 1

L
. Then:

f(xk) − f∗ ≤ (1 − αµ)k(f(x0) − f∗).

Polyak-Lojasiewicz smooth case v § } 34

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Smooth convex case

Smooth convex case v § } 35

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Smooth convex case

ñ Theorem

Consider the Problem

f(x) → min
x∈Rd

and assume that f is convex and L-smooth, for some L > 0.
Let (xk)k∈N be the sequence of iterates generated by the gradient descent constant stepsize algorithm, with a
stepsize satisfying 0 < α ≤ 1

L
. Then, for all x∗ ∈ argmin f , for all k ∈ N we have that

f(xk) − f∗ ≤ ∥x0 − x∗∥2

2αk
.

Smooth convex case v § } 36

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds

Lower bounds v § } 37

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

How optimal is O
(

1
k

)
?

• Is it somehow possible to understand, that the obtained convergence is the fastest possible with this class of
problem and this class of algorithms?

• The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

• Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(1)

Lower bounds v § } 38

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

How optimal is O
(

1
k

)
?

• Is it somehow possible to understand, that the obtained convergence is the fastest possible with this class of
problem and this class of algorithms?

• The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

• Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(1)

Lower bounds v § } 38

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

How optimal is O
(

1
k

)
?

• Is it somehow possible to understand, that the obtained convergence is the fastest possible with this class of
problem and this class of algorithms?

• The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

• Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(1)

Lower bounds v § } 38

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Smooth convex case

ñ Theorem

There exists a function f that is L-smooth and convex such that any method 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

• No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f , the convergence rate is lower bounded as O

(
1

k2

)
.

• The key to the proof is to explicitly build a special function f .

Lower bounds v § } 39

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Smooth convex case

ñ Theorem

There exists a function f that is L-smooth and convex such that any method 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

• No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f , the convergence rate is lower bounded as O

(
1

k2

)
.

• The key to the proof is to explicitly build a special function f .

Lower bounds v § } 39

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Smooth convex case

ñ Theorem

There exists a function f that is L-smooth and convex such that any method 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

• No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f , the convergence rate is lower bounded as O

(
1

k2

)
.

• The key to the proof is to explicitly build a special function f .

Lower bounds v § } 39

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Recap

Recap v § } 40

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Recap

Gradient Descent: min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk)

convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)

f(xk)−f∗ ∼ O
(

1√
k

)
∥∇f(xk)∥2 ∼ O

(1
k

)
f(xk) − f∗ ∼ O

(1
k

)
∥xk − x∗∥2 ∼ O

((
1 − µ

L

)k
)

kε ∼ O
(1

ε2

)
kε ∼ O

(1
ε

)
kε ∼ O

(1
ε

)
kε ∼ O

(
κ log 1

ε

)

For smooth strongly convex we have:

f(xk) − f∗ ≤
(

1 − µ

L

)k

(f(x0) − f∗).

Note also, that for any x

1 − x ≤ e−x

Finally we have

ε = f(xkε) − f∗ ≤
(

1 − µ

L

)kε

(f(x0) − f∗)

≤ exp
(

−kε
µ

L

)
(f(x0) − f∗)

kε ≥ κ log f(x0) − f∗

ε
= O

(
κ log 1

ε

)

Question: Can we do faster, than this using the first-order information? Yes, we can.

Recap v § } 41

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Recap

Gradient Descent: min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk)

convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)

f(xk)−f∗ ∼ O
(

1√
k

)
∥∇f(xk)∥2 ∼ O

(1
k

)
f(xk) − f∗ ∼ O

(1
k

)
∥xk − x∗∥2 ∼ O

((
1 − µ

L

)k
)

kε ∼ O
(1

ε2

)
kε ∼ O

(1
ε

)
kε ∼ O

(1
ε

)
kε ∼ O

(
κ log 1

ε

)
For smooth strongly convex we have:

f(xk) − f∗ ≤
(

1 − µ

L

)k

(f(x0) − f∗).

Note also, that for any x

1 − x ≤ e−x

Finally we have

ε = f(xkε) − f∗ ≤
(

1 − µ

L

)kε

(f(x0) − f∗)

≤ exp
(

−kε
µ

L

)
(f(x0) − f∗)

kε ≥ κ log f(x0) − f∗

ε
= O

(
κ log 1

ε

)

Question: Can we do faster, than this using the first-order information? Yes, we can.

Recap v § } 41

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Recap

Gradient Descent: min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk)

convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)

f(xk)−f∗ ∼ O
(

1√
k

)
∥∇f(xk)∥2 ∼ O

(1
k

)
f(xk) − f∗ ∼ O

(1
k

)
∥xk − x∗∥2 ∼ O

((
1 − µ

L

)k
)

kε ∼ O
(1

ε2

)
kε ∼ O

(1
ε

)
kε ∼ O

(1
ε

)
kε ∼ O

(
κ log 1

ε

)
For smooth strongly convex we have:

f(xk) − f∗ ≤
(

1 − µ

L

)k

(f(x0) − f∗).

Note also, that for any x

1 − x ≤ e−x

Finally we have

ε = f(xkε) − f∗ ≤
(

1 − µ

L

)kε

(f(x0) − f∗)

≤ exp
(

−kε
µ

L

)
(f(x0) − f∗)

kε ≥ κ log f(x0) − f∗

ε
= O

(
κ log 1

ε

)

Question: Can we do faster, than this using the first-order information? Yes, we can.

Recap v § } 41

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Recap

Gradient Descent: min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk)

convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)

f(xk)−f∗ ∼ O
(

1√
k

)
∥∇f(xk)∥2 ∼ O

(1
k

)
f(xk) − f∗ ∼ O

(1
k

)
∥xk − x∗∥2 ∼ O

((
1 − µ

L

)k
)

kε ∼ O
(1

ε2

)
kε ∼ O

(1
ε

)
kε ∼ O

(1
ε

)
kε ∼ O

(
κ log 1

ε

)
For smooth strongly convex we have:

f(xk) − f∗ ≤
(

1 − µ

L

)k

(f(x0) − f∗).

Note also, that for any x

1 − x ≤ e−x

Finally we have

ε = f(xkε) − f∗ ≤
(

1 − µ

L

)kε

(f(x0) − f∗)

≤ exp
(

−kε
µ

L

)
(f(x0) − f∗)

kε ≥ κ log f(x0) − f∗

ε
= O

(
κ log 1

ε

)
Question: Can we do faster, than this using the first-order information?

Yes, we can.

Recap v § } 41

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Recap

Gradient Descent: min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk)

convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)

f(xk)−f∗ ∼ O
(

1√
k

)
∥∇f(xk)∥2 ∼ O

(1
k

)
f(xk) − f∗ ∼ O

(1
k

)
∥xk − x∗∥2 ∼ O

((
1 − µ

L

)k
)

kε ∼ O
(1

ε2

)
kε ∼ O

(1
ε

)
kε ∼ O

(1
ε

)
kε ∼ O

(
κ log 1

ε

)
For smooth strongly convex we have:

f(xk) − f∗ ≤
(

1 − µ

L

)k

(f(x0) − f∗).

Note also, that for any x

1 − x ≤ e−x

Finally we have

ε = f(xkε) − f∗ ≤
(

1 − µ

L

)kε

(f(x0) − f∗)

≤ exp
(

−kε
µ

L

)
(f(x0) − f∗)

kε ≥ κ log f(x0) − f∗

ε
= O

(
κ log 1

ε

)
Question: Can we do faster, than this using the first-order information? Yes, we can.

Recap v § } 41

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds

Lower bounds v § } 42

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds

convex (non-smooth) smooth (non-convex)2 smooth & convex3 smooth & strongly convex (or PL)

O
(

1√
k

)
O

(1
k2

)
O

(1
k2

)
O

((
1 −

√
µ

L

)k
)

kε ∼ O
(1

ε2

)
kε ∼ O

(
1√
ε

)
kε ∼ O

(
1√
ε

)
kε ∼ O

(√
κ log 1

ε

)

2Carmon, Duchi, Hinder, Sidford, 2017
3Nemirovski, Yudin, 1979

Lower bounds v § } 43

https://arxiv.org/pdf/1710.11606.pdf
https://fmin.xyz/assets/files/nemyud1979.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds
The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(2)

ñ Non-smooth convex case

There exists a function f that is M -Lipschitz and
convex such that any first-order method of the
form 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ M∥x0 − x∗∥2

2(1 +
√

k)

ñ Smooth and convex case

There exists a function f that is L-smooth and con-
vex such that any first-order method of the form 2
satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

Lower bounds v § } 44

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds
The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(2)

ñ Non-smooth convex case

There exists a function f that is M -Lipschitz and
convex such that any first-order method of the
form 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ M∥x0 − x∗∥2

2(1 +
√

k)

ñ Smooth and convex case

There exists a function f that is L-smooth and con-
vex such that any first-order method of the form 2
satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

Lower bounds v § } 44

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds
The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(2)

ñ Non-smooth convex case

There exists a function f that is M -Lipschitz and
convex such that any first-order method of the
form 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ M∥x0 − x∗∥2

2(1 +
√

k)

ñ Smooth and convex case

There exists a function f that is L-smooth and con-
vex such that any first-order method of the form 2
satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

Lower bounds v § } 44

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Lower bounds
The iteration of gradient descent:

xk+1 = xk − αk∇f(xk)

= xk−1 − αk−1∇f(xk−1) − αk∇f(xk)
...

= x0 −
k∑

i=0

αk−i∇f(xk−i)

Consider a family of first-order methods, where

xk+1 ∈ x0 + span
{

∇f(x0), ∇f(x1), . . . , ∇f(xk)
}

(2)

ñ Non-smooth convex case

There exists a function f that is M -Lipschitz and
convex such that any first-order method of the
form 2 satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ M∥x0 − x∗∥2

2(1 +
√

k)

ñ Smooth and convex case

There exists a function f that is L-smooth and con-
vex such that any first-order method of the form 2
satisfies

min
i∈[1,k]

f(xi) − f∗ ≥ 3L∥x0 − x∗∥2
2

32(1 + k)2

Lower bounds v § } 44

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Strongly convex quadratic problem

Strongly convex quadratic problem v § } 45

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Oscillations and acceleration

4 2 0 2 4

4

2

0

2

4

Gradient Descent

4 2 0 2 4

4

2

0

2

4

Heavy Ball

Strongly convex quadratic problem v § } 46

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/GD.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates in order to make an analysis a
little bit easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of
initial function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratic problem v § } 47

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates in order to make an analysis a
little bit easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of
initial function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratic problem v § } 47

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates in order to make an analysis a
little bit easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of
initial function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratic problem v § } 47

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Coordinate shift
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates in order to make an analysis a
little bit easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of
initial function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂

4 2 0 2 4
x1

4

2

0

2

4

x 2

0

15

30

30

45

45

60

60

4 2 0 2 4
x1

4

2

0

2

4

x 2

8

16

16

24

24

32

32

40
40

40
40

48 48

48 48

Strongly convex quadratic problem v § } 47

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball

Heavy ball v § } 48

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Polyak Heavy ball method

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent with step 3.5e-01
Start Point
Optimal Point

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Heavy Ball with 3.5e-01 and 3.0e-01
Start Point
Optimal Point

Let’s introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
momentum update is

xk+1 = xk − α∇f(xk) + β(xk − xk−1).

Which is in our (quadratics) case is

x̂k+1 = x̂k − αΛx̂k + β(x̂k − x̂k−1) = (I − αΛ + βI)x̂k − βx̂k−1

This can be rewritten as follows

x̂k+1 = (I − αΛ + βI)x̂k − βx̂k−1,

x̂k = x̂k.

Let’s use the following notation ẑk =
[

x̂k+1
x̂k

]
. Therefore ẑk+1 = Mẑk, where the

iteration matrix M is:

M =
[

I − αΛ + βI −βI
I 0d

]
.

Heavy ball v § } 49

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Polyak Heavy ball method

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent with step 3.5e-01
Start Point
Optimal Point

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Heavy Ball with 3.5e-01 and 3.0e-01
Start Point
Optimal Point

Let’s introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
momentum update is

xk+1 = xk − α∇f(xk) + β(xk − xk−1).

Which is in our (quadratics) case is

x̂k+1 = x̂k − αΛx̂k + β(x̂k − x̂k−1) = (I − αΛ + βI)x̂k − βx̂k−1

This can be rewritten as follows

x̂k+1 = (I − αΛ + βI)x̂k − βx̂k−1,

x̂k = x̂k.

Let’s use the following notation ẑk =
[

x̂k+1
x̂k

]
. Therefore ẑk+1 = Mẑk, where the

iteration matrix M is:

M =
[

I − αΛ + βI −βI
I 0d

]
.

Heavy ball v § } 49

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Polyak Heavy ball method

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent with step 3.5e-01
Start Point
Optimal Point

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Heavy Ball with 3.5e-01 and 3.0e-01
Start Point
Optimal Point

Let’s introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
momentum update is

xk+1 = xk − α∇f(xk) + β(xk − xk−1).

Which is in our (quadratics) case is

x̂k+1 = x̂k − αΛx̂k + β(x̂k − x̂k−1) = (I − αΛ + βI)x̂k − βx̂k−1

This can be rewritten as follows

x̂k+1 = (I − αΛ + βI)x̂k − βx̂k−1,

x̂k = x̂k.

Let’s use the following notation ẑk =
[

x̂k+1
x̂k

]
. Therefore ẑk+1 = Mẑk, where the

iteration matrix M is:

M =
[

I − αΛ + βI −βI
I 0d

]
.

Heavy ball v § } 49

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Polyak Heavy ball method

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent with step 3.5e-01
Start Point
Optimal Point

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Heavy Ball with 3.5e-01 and 3.0e-01
Start Point
Optimal Point

Let’s introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
momentum update is

xk+1 = xk − α∇f(xk) + β(xk − xk−1).

Which is in our (quadratics) case is

x̂k+1 = x̂k − αΛx̂k + β(x̂k − x̂k−1) = (I − αΛ + βI)x̂k − βx̂k−1

This can be rewritten as follows

x̂k+1 = (I − αΛ + βI)x̂k − βx̂k−1,

x̂k = x̂k.

Let’s use the following notation ẑk =
[

x̂k+1
x̂k

]
. Therefore ẑk+1 = Mẑk, where the

iteration matrix M is:

M =
[

I − αΛ + βI −βI
I 0d

]
.

Heavy ball v § } 49

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Polyak Heavy ball method

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent with step 3.5e-01
Start Point
Optimal Point

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Heavy Ball with 3.5e-01 and 3.0e-01
Start Point
Optimal Point

Let’s introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
momentum update is

xk+1 = xk − α∇f(xk) + β(xk − xk−1).

Which is in our (quadratics) case is

x̂k+1 = x̂k − αΛx̂k + β(x̂k − x̂k−1) = (I − αΛ + βI)x̂k − βx̂k−1

This can be rewritten as follows

x̂k+1 = (I − αΛ + βI)x̂k − βx̂k−1,

x̂k = x̂k.

Let’s use the following notation ẑk =
[

x̂k+1
x̂k

]
. Therefore ẑk+1 = Mẑk, where the

iteration matrix M is:

M =
[

I − αΛ + βI −βI
I 0d

]
.

Heavy ball v § } 49

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Reduction to a scalar case
Note, that M is 2d × 2d matrix with 4 block-diagonal matrices of size d × d inside. It means, that we can rearrange
the order of coordinates to make M block-diagonal in the following form. Note that in the equation below, the
matrix M denotes the same as in the notation above, except for the described permutation of rows and columns.
We use this slight abuse of notation for the sake of clarity.

Figure 22: Illustration of matrix M rearrangement



x̂
(1)
k
...

x̂
(d)
k

x̂
(1)
k−1
...

x̂
(d)
k−1


→



x̂
(1)
k

x̂
(1)
k−1
...

x̂
(d)
k

x̂
(d)
k−1


M =

M1
M2

. . .
Md



where x̂
(i)
k is i-th coordinate of vector x̂k ∈ Rd and Mi stands for 2 × 2 matrix. This rearrangement allows us to

study the dynamics of the method independently for each dimension. One may observe, that the asymptotic
convergence rate of the 2d-dimensional vector sequence of ẑk is defined by the worst convergence rate among its
block of coordinates. Thus, it is enough to study the optimization in a one-dimensional case.

Heavy ball v § } 50

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Reduction to a scalar case
Note, that M is 2d × 2d matrix with 4 block-diagonal matrices of size d × d inside. It means, that we can rearrange
the order of coordinates to make M block-diagonal in the following form. Note that in the equation below, the
matrix M denotes the same as in the notation above, except for the described permutation of rows and columns.
We use this slight abuse of notation for the sake of clarity.

Figure 22: Illustration of matrix M rearrangement



x̂
(1)
k
...

x̂
(d)
k

x̂
(1)
k−1
...

x̂
(d)
k−1


→



x̂
(1)
k

x̂
(1)
k−1
...

x̂
(d)
k

x̂
(d)
k−1


M =

M1
M2

. . .
Md



where x̂
(i)
k is i-th coordinate of vector x̂k ∈ Rd and Mi stands for 2 × 2 matrix. This rearrangement allows us to

study the dynamics of the method independently for each dimension. One may observe, that the asymptotic
convergence rate of the 2d-dimensional vector sequence of ẑk is defined by the worst convergence rate among its
block of coordinates. Thus, it is enough to study the optimization in a one-dimensional case.

Heavy ball v § } 50

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Reduction to a scalar case

For i-th coordinate with λi as an i-th eigenvalue of matrix W we have:

Mi =
[

1 − αλi + β −β
1 0

]
.

The method will be convergent if ρ(M) < 1, and the optimal parameters can be computed by optimizing the
spectral radius

α∗, β∗ = arg min
α,β

max
λ∈[µ,L]

ρ(M) α∗ = 4
(
√

L + √
µ)2

; β∗ =
(√

L − √
µ

√
L + √

µ

)2

.

It can be shown, that for such parameters the matrix M has complex eigenvalues, which forms a conjugate pair, so
the distance to the optimum (in this case, ∥zk∥), generally, will not go to zero monotonically.

Heavy ball v § } 51

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Reduction to a scalar case

For i-th coordinate with λi as an i-th eigenvalue of matrix W we have:

Mi =
[

1 − αλi + β −β
1 0

]
.

The method will be convergent if ρ(M) < 1, and the optimal parameters can be computed by optimizing the
spectral radius

α∗, β∗ = arg min
α,β

max
λ∈[µ,L]

ρ(M) α∗ = 4
(
√

L + √
µ)2

; β∗ =
(√

L − √
µ

√
L + √

µ

)2

.

It can be shown, that for such parameters the matrix M has complex eigenvalues, which forms a conjugate pair, so
the distance to the optimum (in this case, ∥zk∥), generally, will not go to zero monotonically.

Heavy ball v § } 51

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Reduction to a scalar case

For i-th coordinate with λi as an i-th eigenvalue of matrix W we have:

Mi =
[

1 − αλi + β −β
1 0

]
.

The method will be convergent if ρ(M) < 1, and the optimal parameters can be computed by optimizing the
spectral radius

α∗, β∗ = arg min
α,β

max
λ∈[µ,L]

ρ(M) α∗ = 4
(
√

L + √
µ)2

; β∗ =
(√

L − √
µ

√
L + √

µ

)2

.

It can be shown, that for such parameters the matrix M has complex eigenvalues, which forms a conjugate pair, so
the distance to the optimum (in this case, ∥zk∥), generally, will not go to zero monotonically.

Heavy ball v § } 51

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of Mi:

λM
1 , λM

2 = λ

([
1 − αλi + β −β

1 0

])
=

1 + β − αλi ±
√

(1 + β − αλi)2 − 4β

2 .

When α and β are optimal (α∗, β∗), the eigenvalues are complex-conjugated pair (1 + β − αλi)2 − 4β ≤ 0,
i.e. β ≥ (1 −

√
αλi)2.

Re(λM
1) = L + µ − 2λi

(
√

L + √
µ)2

; Im(λM
1) =

±2
√

(L − λi)(λi − µ)
(
√

L + √
µ)2

; |λM
1 | = L − µ

(
√

L + √
µ)2

.

And the convergence rate does not depend on the stepsize and equals to
√

β∗.

Heavy ball v § } 52

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of Mi:

λM
1 , λM

2 = λ

([
1 − αλi + β −β

1 0

])
=

1 + β − αλi ±
√

(1 + β − αλi)2 − 4β

2 .

When α and β are optimal (α∗, β∗), the eigenvalues are complex-conjugated pair (1 + β − αλi)2 − 4β ≤ 0,
i.e. β ≥ (1 −

√
αλi)2.

Re(λM
1) = L + µ − 2λi

(
√

L + √
µ)2

; Im(λM
1) =

±2
√

(L − λi)(λi − µ)
(
√

L + √
µ)2

; |λM
1 | = L − µ

(
√

L + √
µ)2

.

And the convergence rate does not depend on the stepsize and equals to
√

β∗.

Heavy ball v § } 52

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of Mi:

λM
1 , λM

2 = λ

([
1 − αλi + β −β

1 0

])
=

1 + β − αλi ±
√

(1 + β − αλi)2 − 4β

2 .

When α and β are optimal (α∗, β∗), the eigenvalues are complex-conjugated pair (1 + β − αλi)2 − 4β ≤ 0,
i.e. β ≥ (1 −

√
αλi)2.

Re(λM
1) = L + µ − 2λi

(
√

L + √
µ)2

; Im(λM
1) =

±2
√

(L − λi)(λi − µ)
(
√

L + √
µ)2

; |λM
1 | = L − µ

(
√

L + √
µ)2

.

And the convergence rate does not depend on the stepsize and equals to
√

β∗.

Heavy ball v § } 52

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of Mi:

λM
1 , λM

2 = λ

([
1 − αλi + β −β

1 0

])
=

1 + β − αλi ±
√

(1 + β − αλi)2 − 4β

2 .

When α and β are optimal (α∗, β∗), the eigenvalues are complex-conjugated pair (1 + β − αλi)2 − 4β ≤ 0,
i.e. β ≥ (1 −

√
αλi)2.

Re(λM
1) = L + µ − 2λi

(
√

L + √
µ)2

; Im(λM
1) =

±2
√

(L − λi)(λi − µ)
(
√

L + √
µ)2

; |λM
1 | = L − µ

(
√

L + √
µ)2

.

And the convergence rate does not depend on the stepsize and equals to
√

β∗.

Heavy ball v § } 52

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy Ball quadratics convergence

ñ Theorem

Assume that f is quadratic µ-strongly convex L-smooth quadratics, then Heavy Ball method with parameters

α = 4
(
√

L + √
µ)2

, β =
√

L − √
µ

√
L + √

µ

converges linearly:

∥xk − x∗∥2 ≤
(√

κ − 1√
κ + 1

)
∥x0 − x∗∥

Heavy ball v § } 53

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy Ball Global Convergence 4

ñ Theorem

Assume that f is smooth and convex and that

β ∈ [0, 1), α ∈
(

0,
2(1 − β)

L

)
.

Then, the sequence {xk} generated by Heavy-ball iteration satisfies

f(xT) − f⋆ ≤


∥x0−x⋆∥2

2(T +1)

(
Lβ

1−β
+ 1−β

α

)
, if α ∈

(
0,

1 − β

L

]
,

∥x0−x⋆∥2

2(T +1)(2(1−β)−αL)

(
Lβ + (1−β)2

α

)
, if α ∈

[1 − β

L
,

2(1 − β)
L

)
,

where xT is the Cesaro average of the iterates, i.e.,

xT = 1
T + 1

T∑
k=0

xk.

4Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.
Heavy ball v § } 54

https://arxiv.org/abs/1412.7457
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy Ball Global Convergence 5

ñ Theorem

Assume that f is smooth and strongly convex and that

α ∈ (0,
2
L

), 0 ≤ β <
1
2

(
µα

2 +

√
µ2α2

4 + 4(1 − αL

2)
)

.

where α0 ∈ (0, 1/L]. Then, the sequence {xk} generated by Heavy-ball iteration converges linearly to a
unique optimizer x⋆. In particular,

f(xk) − f⋆ ≤ qk(f(x0) − f⋆),

where q ∈ [0, 1).

5Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.
Heavy ball v § } 55

https://arxiv.org/abs/1412.7457
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems

• Local accelerated convergence was proved in the original paper.
• Recently was proved, that there is no global accelerated convergence for the method.
• Method was not extremely popular until the ML boom
• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex

problems (neural network training)

Heavy ball v § } 56

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems
• Local accelerated convergence was proved in the original paper.

• Recently was proved, that there is no global accelerated convergence for the method.
• Method was not extremely popular until the ML boom
• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex

problems (neural network training)

Heavy ball v § } 56

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems
• Local accelerated convergence was proved in the original paper.
• Recently was proved, that there is no global accelerated convergence for the method.

• Method was not extremely popular until the ML boom
• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex

problems (neural network training)

Heavy ball v § } 56

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems
• Local accelerated convergence was proved in the original paper.
• Recently was proved, that there is no global accelerated convergence for the method.
• Method was not extremely popular until the ML boom

• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex
problems (neural network training)

Heavy ball v § } 56

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems
• Local accelerated convergence was proved in the original paper.
• Recently was proved, that there is no global accelerated convergence for the method.
• Method was not extremely popular until the ML boom
• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex

problems (neural network training)

Heavy ball v § } 56

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Nesterov accelerated gradient

Nesterov accelerated gradient v § } 57

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

The concept of Nesterov Accelerated Gradient method

xk+1 = xk − α∇f(xk) xk+1 = xk − α∇f(xk) + β(xk − xk−1)

{
yk+1 = xk + β(xk − xk−1)
xk+1 = yk+1 − α∇f(yk+1)

Let’s define the following notation

x+ = x − α∇f(x) Gradient step
dk = βk(xk − xk−1) Momentum term

Then we can write down:

xk+1 = x+
k Gradient Descent

xk+1 = x+
k + dk Heavy Ball

xk+1 = (xk + dk)+ Nesterov accelerated gradient

Nesterov accelerated gradient v § } 58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

The concept of Nesterov Accelerated Gradient method

xk+1 = xk − α∇f(xk) xk+1 = xk − α∇f(xk) + β(xk − xk−1)

{
yk+1 = xk + β(xk − xk−1)
xk+1 = yk+1 − α∇f(yk+1)

Let’s define the following notation

x+ = x − α∇f(x) Gradient step
dk = βk(xk − xk−1) Momentum term

Then we can write down:

xk+1 = x+
k Gradient Descent

xk+1 = x+
k + dk Heavy Ball

xk+1 = (xk + dk)+ Nesterov accelerated gradient

Nesterov accelerated gradient v § } 58

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

NAG convergence for quadratics

Nesterov accelerated gradient v § } 59

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

General case convergence

ñ Theorem

Let f : Rn → R is convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG) algorithm is
designed to solve the minimization problem starting with an initial point x0 = y0 ∈ Rn and λ0 = 0. The
algorithm iterates the following steps:

Gradient update: yk+1 = xk − 1
L

∇f(xk)

Extrapolation: xk+1 = (1 − γk)yk+1 + γkyk

Extrapolation weight: λk+1 =
1 +

√
1 + 4λ2

k

2

Extrapolation weight: γk = 1 − λk

λk+1

The sequences {f(yk)}k∈N produced by the algorithm will converge to the optimal value f∗ at the rate of
O

(
1

k2

)
, specifically:

f(yk) − f∗ ≤ 2L∥x0 − x∗∥2

k2

Nesterov accelerated gradient v § } 60

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

General case convergence

ñ Theorem

Let f : Rn → R is µ-strongly convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG)
algorithm is designed to solve the minimization problem starting with an initial point x0 = y0 ∈ Rn and
λ0 = 0. The algorithm iterates the following steps:

Gradient update: yk+1 = xk − 1
L

∇f(xk)

Extrapolation: xk+1 = (1 − γk)yk+1 + γkyk

Extrapolation weight: γk =
√

L − √
µ

√
L + √

µ

The sequences {f(yk)}k∈N produced by the algorithm will converge to the optimal value f∗ linearly:

f(yk) − f∗ ≤ µ + L

2 ∥x0 − x∗∥2
2 exp

(
− k√

κ

)

Nesterov accelerated gradient v § } 61

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

	Optimization without gradients
	Line search
	Gradient Descent
	Strongly convex quadratics
	Polyak-Lojasiewicz smooth case
	Smooth convex case
	Lower bounds
	Recap
	Lower bounds
	Strongly convex quadratic problem
	Heavy ball
	Nesterov accelerated gradient

