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What is Linear Programming?
Generally speaking, all problems with linear objective and linear
equalities/inequalities constraints could be considered as Linear
Programming. However, there are some formulations.

min
x∈Rn

c⊤x

s.t. Ax ≤ b
(LP.Basic)

for some vectors c ∈ Rn, b ∈ Rm and matrix A ∈ Rm×n. Where the
inequalities are interpreted component-wise.

Standard form. This form seems to be the most intuitive and
geometric in terms of visualization. Let us have vectors c ∈ Rn,
b ∈ Rm and matrix A ∈ Rm×n.

min
x∈Rn

c⊤x

s.t. Ax = b

xi ≥ 0, i = 1, . . . , n

(LP.Standard)
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Example: Diet problem

Imagine, that you have to construct a diet plan from some
set of products: bananas, cakes, chicken, eggs, fish. Each
of the products has its vector of nutrients. Thus, all the
food information could be processed through the matrix
W . Let us also assume, that we have the vector of
requirements for each of nutrients r ∈ Rn. We need to
find the cheapest configuration of the diet, which meets
all the requirements:

min
x∈Rp

c⊤x

s.t. W x ⪰ r

xi ≥ 0, i = 1, . . . , n

3Open In Colab
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Basic transformations
• Max-min

min
x∈Rn

c⊤x

s.t. Ax ≤ b
↔

max
x∈Rn

−c⊤x

s.t. Ax ≤ b

• Equality to inequality

Ax = b ↔
{

Ax ≤ b

Ax ≥ b

• Inequality to equality by increasing the dimension of the problem by m.

Ax ≤ b ↔
{

Ax + z = b

z ≥ 0

• Unsigned variables to nonnegative variables.

x ↔


x = x+ − x−

x+ ≥ 0
x− ≥ 0
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Example: Chebyshev approximation problem

min
x∈Rn

∥Ax − b∥∞ ↔ min
x∈Rn

max
i

|aT
i x − bi|

Could be equivalently written as an LP with the replacement of the maximum coordinate of a vector:

min
t∈R,x∈Rn

t

s.t. aT
i x − bi ≤ t, i = 1, . . . , n

− aT
i x + bi ≤ t, i = 1, . . . , n
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ℓ1 approximation problem

min
x∈Rn

∥Ax − b∥1 ↔ min
x∈Rn

n∑
i=1

|aT
i x − bi|

Could be equivalently written as an LP with the replacement of the sum of coordinates of a vector:

min
t∈Rn,x∈Rn

1T t

s.t. aT
i x − bi ≤ ti, i = 1, . . . , n

− aT
i x + bi ≤ ti, i = 1, . . . , n
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Duality

Primal problem:

min
x∈Rn

c⊤x

s.t. Ax = b

xi ≥ 0, i = 1, . . . , n

(1)

KKT for optimal x∗, ν∗, λ∗:

L(x, ν, λ) = cT x + νT (Ax − b) − λT x

− AT ν∗ + λ∗ = c

Ax∗ = b

x∗ ⪰ 0
λ∗ ⪰ 0
λ∗

i x∗
i = 0

Has the following dual:

max
ν∈Rm

−b⊤ν

s.t. − AT ν ⪯ c
(2)

Find the dual problem to the problem above (it should be
the original LP). Also, write down KKT for the dual
problem, to ensure, they are identical to the primal KKT.
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Strong duality in linear programming
(i) If either problem Equation 1 or Equation 2 has a (finite) solution, then so does the other, and the objective

values are equal.

(ii) If either problem Equation 1 or Equation 2 is unbounded, then the other problem is infeasible.

PROOF. For (i), suppose that Equation 1 has a finite optimal solution x∗. It follows from KKT that there are
optimal vectors λ∗ and ν∗ such that (x∗, ν∗, λ∗) satisfies KKT. We noted above that KKT for Equation 1 and
Equation 2 are equivalent. Moreover, cT x∗ = (−AT ν∗ + λ∗)T x∗ = −(ν∗)T Ax∗ = −bT ν∗, as claimed.

A symmetric argument holds if we start by assuming that the dual problem Equation 2 has a solution.

To prove (ii), suppose that the primal is unbounded, that is, there is a sequence of points xk, k = 1, 2, 3, . . . such
that

cT xk ↓ −∞, Axk = b, xk ≥ 0.

Suppose too that the dual Equation 2 is feasible, that is, there exists a vector ν̄ such that −AT ν̄ ≤ c. From the
latter inequality together with xk ≥ 0, we have that −ν̄T Axk ≤ cT xk, and therefore

−ν̄T b = −ν̄T Axk ≤ cT xk ↓ −∞,

yielding a contradiction. Hence, the dual must be infeasible. A similar argument can be used to show that the
unboundedness of the dual implies the infeasibility of the primal.
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Example: Transportation problem
The prototypical transportation problem deals with the distribution of a commodity from a set of sources to a set of
destinations. The object is to minimize total transportation costs while satisfying constraints on the supplies
available at each of the sources, and satisfying demand requirements at each of the destinations.

Figure 1: Western Europe Map. 3Open In Colab
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Example: Transportation problem

Customer / Source Arnhem [*/ton] Gouda [*/ton] Demand [tons]
London n/a 2.5 125
Berlin 2.5 n/a 175

Maastricht 1.6 2.0 225
Amsterdam 1.4 1.0 250

Utrecht 0.8 1.0 225
The Hague 1.4 0.8 200

Supply [tons] 550 tons 700 tons

minimize: Cost =
∑

c∈Customers

∑
s∈Sources

T [c, s]x[c, s]

∑
c∈Customers

x[c, s] ≤ Supply[s] ∀s ∈ Sources

∑
s∈Sources

x[c, s] = Demand[c] ∀c ∈ Customers

This can be represented in the
following graph:

Figure 2: Graph associated with the
problem
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Simplex Algorithm
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Geometry of simplex algorithm
We will consider the following simple formulation of LP,
which is, in fact, dual to the Standard form:

min
x∈Rn

c⊤x

s.t. Ax ≤ b
(LP.Inequality)

• Definition: a basis B is a subset of n (integer)
numbers between 1 and m, so that rankAB = n.

• Note, that we can associate submatrix AB and
corresponding right-hand side bB with the basis B.

• Also, we can derive a point of intersection of all these
hyperplanes from the basis: xB = A−1

B bB.
• If AxB ≤ b, then basis B is feasible.
• A basis B is optimal if xB is an optimum of the

LP.Inequality.
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The solution of LP if exists lies in the corner

ñ Theorem

1. If Standard LP has a nonempty feasible region, then there
is at least one basic feasible point

2. If Standard LP has solutions, then at least one such
solution is a basic optimal point.

3. If Standard LP is feasible and bounded, then it has an
optimal solution.

For proof see Numerical Optimization by Jorge Nocedal and
Stephen J. Wright theorem 13.2

The high-level idea of the simplex method is following:

• Ensure, that you are in the corner.
• Check optimality.
• If necessary, switch the corner (change the basis).
• Repeat until converge.
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Optimal basis
Since we have a basis, we can decompose our objective vector c in
this basis and find the scalar coefficients λB:

λT
BAB = cT ↔ λT

B = cT A−1
B

ñ Theorem

If all components of λB are non-positive and B is feasible, then
B is optimal.

Proof

∃x∗ : Ax∗ ≤ b, cT x∗ < cT xB

ABx∗ ≤ bB

λT
BABx∗ ≥ λT

BbB

cT x∗ ≥ λT
BABxB

cT x∗ ≥ cT xB
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Changing basis

Suppose, some of the coefficients of λB
are positive. Then we need to go
through the edge of the polytope to the
new vertex (i.e., switch the basis)

• Suppose, we have a basis B: λT
B = cT A−1

B

• Let’s assume, that λk
B > 0. We’d like to drop k from the basis and

form a new one:

{
AB\{k}d = 0
aT

k d = −1
cT d = λT

BABd =
n∑

i=1

λi
B(ABd)i = −λk

B < 0

• For all j /∈ B calculate the projection stepsize:

µj =
bj − aT

j xB

aT
j d

• Define the new vertex, that you will add to the new basis:

t = arg min
j

{µj | µj > 0}

B′ = B\{k} ∪ {t}

xB′ = xB + µtd = A−1
B′ bB′

• Note, that changing basis implies objective function decreasing

cT xB′ = cT (xB + µtd) = cT xB + µtc
T d
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Finding an initial basic feasible solution

We aim to solve the following problem:

min
x∈Rn

c⊤x

s.t. Ax ≤ b
(3)

The proposed algorithm requires an initial basic feasible
solution and corresponding basis.

We start by reformulating the problem:

min
y∈Rn,z∈Rn

c⊤(y − z)

s.t. Ay − Az ≤ b

y ≥ 0, z ≥ 0

(4)

Given the solution of Problem 4 the solution of Problem 3 can be recovered and vice versa

x = y − z ⇔ yi = max(xi, 0), zi = max(−xi, 0)

Now we will try to formulate new LP problem, which solution will be basic feasible point for Problem 4. Which
means, that we firstly run Simplex algorithm for Phase-1 problem and run Phase-2 problem with known starting
point. Note, that basic feasible solution for Phase-1 should be somehow easily established.
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Finding an initial basic feasible solution
min

y∈Rn,z∈Rn
c⊤(y − z)

s.t. Ay − Az ≤ b

y ≥ 0, z ≥ 0

(Phase-2 (Main LP))

min
ξ∈Rm,y∈Rn,z∈Rn

m∑
i=1

ξi

s.t. Ay − Az ≤ b + ξ

y ≥ 0, z ≥ 0, ξ ≥ 0

(Phase-1)

• If Phase-2 (Main LP) problem has a feasible solution,
then Phase-1 optimum is zero (i.e. all slacks ξi are
zero).
Proof: trivial check.

• If Phase-1 optimum is zero (i.e. all slacks ξi are
zero), then we get a feasible basis for Phase-2.
Proof: trivial check.

• Now we know, that if we can solve a Phase-1 problem then we will either find a starting point for the simplex
method in the original method (if slacks are zero) or verify that the original problem was infeasible (if slacks are
non-zero).

• But how to solve Phase-1? It has basic feasible solution (the problem has 2n + m variables and the point below
ensures 2n + m inequalities are satisfied as equalities (active).)

z = 0 y = 0 ξi = max(0, −bi)

Simplex Algorithm v § } 19
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Convergence of the Simplex Algorithm
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Unbounded budget set
In this case, all µj will be negative.
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Degeneracy
One needs to handle degenerate corners carefully. If no
degeneracy exists, one can guarantee a monotonic
decrease of the objective function on each iteration.
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Exponential convergence
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Dimension, n
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Average computation time on 3 runs for Klee-Minty problem.
Interior Point method
Simplex method

• A wide variety of applications could be formulated as
linear programming.

• Simplex algorithm is simple but could work
exponentially long.

• Khachiyan’s ellipsoid method (1979) is the first to be
proven to run at polynomial complexity for LPs.
However, it is usually slower than simplex in real
problems.

• Major breakthrough - Narendra Karmarkar’s method
for solving LP (1984) using interior point method.

• Interior point methods are the last word in this area.
However, good implementations of simplex-based
methods and interior point methods are similar for
routine applications of linear programming.
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Klee Minty example

Since the number of edge points is finite, the algorithm should converge (except for some degenerate cases, which
are not covered here). However, the convergence could be exponentially slow, due to the high number of edges.
There is the following iconic example when the simplex algorithm should perform exactly all vertexes.
In the following problem, the simplex algorithm needs to check 2n − 1
vertexes with x0 = 0.

max
x∈Rn

2n−1x1 + 2n−2x2 + · · · + 2xn−1 + xn

s.t. x1 ≤ 5
4x1 + x2 ≤ 25
8x1 + 4x2 + x3 ≤ 125
. . .

2nx1 + 2n−1x2 + 2n−2x3 + . . . + xn ≤ 5n

x ≥ 0
2 4 6 8 10 12 14

Dimension, n

10 2

10 1

100

101

Ti
m

e,
 s

Average computation time on 3 runs
random LP
Klee Minty
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Other
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Minimization of convex function as LP

Figure 3: How LP can help with general convex problem

• The function is convex iff it can be represented as a pointwise maximum of linear functions.

• In high dimensions, the approximation may require too many functions.
• More efficient convex optimizers (not reducing to LP) exist.
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Mixed Integer Programming
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Complexity of MIP
Consider the following Mixed Integer Programming (MIP):

z = 8x1 + 11x2 + 6x3 + 4x4 → max
x1,x2,x3,x4

s.t. 5x1 + 7x2 + 4x3 + 3x4 ≤ 14
xi ∈ {0, 1} ∀i

(5)

Relax it to:

z = 8x1 + 11x2 + 6x3 + 4x4 → max
x1,x2,x3,x4

s.t. 5x1 + 7x2 + 4x3 + 3x4 ≤ 14
xi ∈ [0, 1] ∀i

(6)

Optimal solution

x1 = 0, x2 = x3 = x4 = 1, and z = 21.

Optimal solution

x1 = x2 = 1, x3 = 0.5, x4 = 0, and z = 22.

• Rounding x3 = 0: gives z = 19.
• Rounding x3 = 1: Infeasible.

, MIP is much harder, than LP

• Naive rounding of LP relaxation of the initial MIP problem might lead to infeasible or suboptimal
solution.

• General MIP is NP-hard.
• However, if the coefficient matrix of an MIP is a totally unimodular matrix, then it can be solved in

polynomial time.

Mixed Integer Programming v § } 28
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Unpredictable complexity of MIP
• It is hard to predict what will be

solved quickly and what will take a
long time
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• 3Source code
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Running time to optimality for different MIPs
MIPLIB 2017 Collection Set

Easy (< 1 hour)
Hard (> 1 hour)
Unsolved
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Hardware progress vs Software progress
What would you choose, assuming, that the question posed correctly (you can compile software for any hardware
and the problem is the same for both options)? We will consider the time period from 1992 to 2023.

\ Hardware

Solving MIP with an old software on the modern
hardware

\ Software

Solving MIP with a modern software on the old
hardware

≈ 1.664.510 x speedup

Moore’s law states, that computational power doubles
every 18 monthes.

≈ 2.349.000 x speedup

R. Bixby conducted an intensive experiment with
benchmarking all CPLEX software version starting from
1992 to 2007 and measured overall software progress
(29000 times), later (in 2009) he was a cofounder of
Gurobi optimization software, which gives additional ≈ 81
speedup on MILP.

It turns out that if you need to solve a MILP, it is better to use an old computer and modern methods than vice
versa, the newest computer and methods of the early 1990s!1

1 R. Bixby report Recent study
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Idea of Branch and Bound method
1. Initial Relaxation:

• Solve the linear programming (LP) relaxation of the original MIP by relaxing the integer constraints xi ∈ {0, 1} to
0 ≤ xi ≤ 1.

• This gives an upper bound on the optimal value of the MIP since the feasible region of the LP relaxation contains
the feasible region of the original MIP.

2. Branching:

• If the solution to the LP relaxation is integer (i.e., xi ∈ {0, 1} for all i), then it is the optimal solution to the MIP.
• If the solution is not integer, select a variable xi that is fractional (e.g., xi = 0.5) and create two subproblems

(branches):

• In the first subproblem, add the constraint xi = 0.
• In the second subproblem, add the constraint xi = 1.

3. Bounding:

• Solve the LP relaxation of each subproblem.
• Calculate the objective value (upper bound) for each subproblem.
• If the upper bound of a subproblem is less than the best known integer feasible solution, prune that subproblem (do

not explore it further).

4. Fathoming:

• If a subproblem yields an integer solution that is better than the best known solution, update the best known
solution.

• If a subproblem’s upper bound is less than or equal to the best known solution, prune it.
• If a subproblem is infeasible, prune it.

5. Iteration:

• Repeat the branching, bounding, and fathoming steps until all subproblems are either pruned or solved to integer
optimality.

• The best known integer solution at the end of the process is the optimal solution to the original MIP.
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• If the solution is not integer, select a variable xi that is fractional (e.g., xi = 0.5) and create two subproblems

(branches):
• In the first subproblem, add the constraint xi = 0.
• In the second subproblem, add the constraint xi = 1.

3. Bounding:

• Solve the LP relaxation of each subproblem.
• Calculate the objective value (upper bound) for each subproblem.
• If the upper bound of a subproblem is less than the best known integer feasible solution, prune that subproblem (do

not explore it further).
4. Fathoming:

• If a subproblem yields an integer solution that is better than the best known solution, update the best known
solution.

• If a subproblem’s upper bound is less than or equal to the best known solution, prune it.
• If a subproblem is infeasible, prune it.

5. Iteration:

• Repeat the branching, bounding, and fathoming steps until all subproblems are either pruned or solved to integer
optimality.

• The best known integer solution at the end of the process is the optimal solution to the original MIP.
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MIP Example

Consider the following MIP:

z = 8x1 + 11x2 + 6x3 + 4x4 → max
x1,x2,x3,x4

s.t. 5x1 + 7x2 + 4x3 + 3x4 ≤ 14
xi ∈ {0, 1} ∀i
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