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Background

Figure 1: Illustration of different stationary
(critical) points

f(x) → min
x∈S

A set S is usually called a budget set.
We say that the problem has a solution if the budget set is not
empty: x∗ ∈ S, in which the minimum or the infimum of the given
function is achieved.

• A point x∗ is a global minimizer if f(x∗) ≤ f(x) for all x.
• A point x∗ is a local minimizer if there exists a neighborhood N

of x∗ such that f(x∗) ≤ f(x) for all x ∈ N .
• A point x∗ is a strict local minimizer (also called a strong local

minimizer) if there exists a neighborhood N of x∗ such that
f(x∗) < f(x) for all x ∈ N with x ̸= x∗.

• We call x∗ a stationary point (or critical) if ∇f(x∗) = 0. Any
local minimizer of a differentiable function must be a stationary
point.
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Extreme value (Weierstrass) theorem

ñ Theorem

Let S ⊂ Rn be a compact set and f(x) a
continuous function on S. So, the point
of the global minimum of the function
f(x) on S exists.

Figure 2: A lot of practical problems are
theoretically solvable

ñ Taylor’s Theorem

Suppose that f : Rn → R is continuously differentiable and
that p ∈ Rn. Then we have:

f(x + p) = f(x) + ∇f(x + tp)T p for some t ∈ (0, 1)

Moreover, if f is twice continuously differentiable, we have:

∇f(x + p) = ∇f(x) +
∫ 1

0
∇2f(x + tp)p dt

f(x + p) = f(x) + ∇f(x)T p + 1
2pT ∇2f(x + tp)p

for some t ∈ (0, 1).
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Unconstrained optimization
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Necessary Conditions
ñ First-Order Necessary Conditions

If x∗ is a local minimizer and f is continuously differentiable in an open neighborhood, then

∇f(x∗) = 0

Proof
Suppose for contradiction that ∇f(x∗) ̸= 0. Define the vector p = −∇f(x∗) and note that

pT ∇f(x∗) = −∥∇f(x∗)∥2 < 0

Because ∇f is continuous near x∗, there is a scalar T > 0 such that

pT ∇f(x∗ + tp) < 0, for all t ∈ [0, T ]

For any t̄ ∈ (0, T ], we have by Taylor’s theorem that

f(x∗ + t̄p) = f(x∗) + t̄pT ∇f(x∗ + tp), for some t ∈ (0, t̄)

Therefore, f(x∗ + t̄p) < f(x∗) for all t̄ ∈ (0, T ]. We have found a direction from x∗ along which f decreases,
so x∗ is not a local minimizer, leading to a contradiction.
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Sufficient Conditions

ñ Second-Order Sufficient Conditions

Suppose that ∇2f is continuous in an open neighborhood of x∗ and that

∇f(x∗) = 0 ∇2f(x∗) ≻ 0.

Then x∗ is a strict local minimizer of f .

Proof
Because the Hessian is continuous and positive definite at x∗, we can choose a radius r > 0 such that ∇2f(x)
remains positive definite for all x in the open ball B = {z | ∥z − x∗∥ < r}. Taking any nonzero vector p with
∥p∥ < r, we have x∗ + p ∈ B and so

f(x∗ + p) = f(x∗) + pT ∇f(x∗) + 1
2pT ∇2f(z)p

= f(x∗) + 1
2pT ∇2f(z)p

where z = x∗ +tp for some t ∈ (0, 1). Since z ∈ B, we have pT ∇2f(z)p > 0, and therefore f(x∗ +p) > f(x∗),
giving the result.
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Peano counterexample

Note, that if ∇f(x∗) = 0, ∇2f(x∗) ⪰ 0, i.e. the
hessian is positive semidefinite, we cannot be sure if
x∗ is a local minimum.

f(x, y) = (2x2 − y)(x2 − y)

Although the surface does not have a local
minimizer at the origin, its intersection with any
vertical plane through the origin (a plane with
equation y = mx or x = 0) is a curve that has a
local minimum at the origin. In other words, if a
point starts at the origin (0, 0) of the plane, and
moves away from the origin along any straight line,
the value of (2x2 − y)(x2 − y) will increase at the
start of the motion. Nevertheless, (0, 0) is not a
local minimizer of the function, because moving
along a parabola such as y =

√
2x2 will cause the

function value to decrease.
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Peano counterexample

Note, that if ∇f(x∗) = 0, ∇2f(x∗) ⪰ 0, i.e. the
hessian is positive semidefinite, we cannot be sure if
x∗ is a local minimum.

f(x, y) = (2x2 − y)(x2 − y)

Although the surface does not have a local
minimizer at the origin, its intersection with any
vertical plane through the origin (a plane with
equation y = mx or x = 0) is a curve that has a
local minimum at the origin. In other words, if a
point starts at the origin (0, 0) of the plane, and
moves away from the origin along any straight line,
the value of (2x2 − y)(x2 − y) will increase at the
start of the motion. Nevertheless, (0, 0) is not a
local minimizer of the function, because moving
along a parabola such as y =

√
2x2 will cause the

function value to decrease.
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Constrained optimization
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General first-order local optimality condition
Direction d ∈ Rn is a feasible direction
at x∗ ∈ S ⊆ Rn if small steps along d
do not take us outside of S.

Consider a set S ⊆ Rn and a function
f : Rn → R. Suppose that x∗ ∈ S is a
point of local minimum for f over S,
and further assume that f is
continuously differentiable around x∗.

1. Then for every feasible direction
d ∈ Rn at x∗ it holds that
∇f(x∗)⊤d ≥ 0.

2. If, additionally, S is convex then

∇f(x∗)⊤(x − x∗) ≥ 0, ∀x ∈ S.

Figure 3: General first order local optimality condition
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Convex case

It should be mentioned, that in the convex case (i.e., f(x) is convex) necessary condition becomes sufficient.

One more important result for the convex unconstrained case sounds as follows. If f(x) : S → R - convex function
defined on the convex set S, then:

• Any local minima is the global one.
• The set of the local minimizers S∗ is convex.
• If f(x) - strictly or strongly convex function, then S∗ contains only one single point S∗ = {x∗}.
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Optimization with equality constraints

Things are pretty simple and intuitive in unconstrained problems. In this section, we will add one equality constraint,
i.e.

f(x) → min
x∈Rn

s.t. h(x) = 0

We will try to illustrate an approach to solve this problem through the simple example with f(x) = x1 + x2 and
h(x) = x2

1 + x2
2 − 2.
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Optimization with equality constraints

Figure 4: Illustration of KKT
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Optimization with equality constraints

Figure 5: Illustration of KKT
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Optimization with equality constraints

Figure 6: Illustration of KKT
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Optimization with equality constraints

Figure 7: Illustration of KKT
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Optimization with equality constraints

Figure 8: Illustration of KKT
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Optimization with equality constraints

Figure 9: Illustration of KKT
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Optimization with equality constraints

Figure 10: Illustration of KKT

Constrained optimization v § } 21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Optimization with equality constraints

Figure 11: Illustration of KKT
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Optimization with equality constraints

Figure 12: Illustration of KKT
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Optimization with equality constraints

Generally: to move from xF along the budget set toward decreasing the function, we need to guarantee two
conditions:

⟨δx, ∇h(xF )⟩ = 0

⟨δx, −∇f(xF )⟩ > 0

Let’s assume, that in the process of such a movement, we have come to the point where

−∇f(x) = ν∇h(x)

⟨δx, −∇f(x)⟩ = ⟨δx, ν∇h(x)⟩ = 0

Then we came to the point of the budget set, moving from which it will not be possible to reduce our function. This
is the local minimum in the constrained problem :)
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Optimization with equality constraints

Figure 13: Illustration of KKT
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Lagrangian
So let’s define a Lagrange function (just for our convenience):

L(x, ν) = f(x) + νh(x)

Then if the problem is regular (we will define it later) and the point x∗ is the local minimum of the problem
described above, then there exists ν∗:

Necessary conditions
∇xL(x∗, ν∗) = 0 that’s written above
∇νL(x∗, ν∗) = 0 budget constraint
Sufficient conditions
⟨y, ∇2

xxL(x∗, ν∗)y⟩ > 0,

∀y ̸= 0 ∈ Rn : ∇h(x∗)⊤y = 0

We should notice that L(x∗, ν∗) = f(x∗).
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Equality constrained problem

f(x) → min
x∈Rn

s.t. hi(x) = 0, i = 1, . . . , p
(ECP)

L(x, ν) = f(x) +
p∑

i=1

νihi(x) = f(x) + ν⊤h(x)

Let f(x) and hi(x) be twice differentiable at the point x∗ and continuously differentiable in some neighborhood x∗.
The local minimum conditions for x ∈ Rn, ν ∈ Rp are written as

ECP: Necessary conditions
∇xL(x∗, ν∗) = 0
∇νL(x∗, ν∗) = 0
ECP: Sufficient conditions
⟨y, ∇2

xxL(x∗, ν∗)y⟩ > 0,

∀y ̸= 0 ∈ Rn : ∇hi(x∗)⊤y = 0
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Linear Least Squares

ñ Example

Pose the optimization problem and solve them for linear system Ax = b, A ∈ Rm×n for three cases (assuming
the matrix is full rank):

• m < n

• m = n
• m > n
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Optimization with inequality constraints
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Example of inequality constraints

f(x) = x2
1 + x2

2 g(x) = x2
1 + x2

2 − 1

f(x) → min
x∈Rn

s.t. g(x) ≤ 0
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Optimization with inequality constraints

Figure 14: Illustration of KKT (inequality case)
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Optimization with inequality constraints

Figure 15: Illustration of KKT (inequality case)
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Optimization with inequality constraints

 

Figure 16: Illustration of KKT (inequality case)
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Optimization with inequality constraints

 

Figure 17: Illustration of KKT (inequality case)
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Optimization with inequality constraints

Thus, if the constraints of the type of inequalities are inactive in the constrained problem, then don’t worry and
write out the solution to the unconstrained problem. However, this is not the whole story. Consider the second
childish example

f(x) = (x1 − 1)2 + (x2 + 1)2 g(x) = x2
1 + x2

2 − 1

f(x) → min
x∈Rn

s.t. g(x) ≤ 0
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Optimization with inequality constraints

Figure 18: Illustration of KKT (inequality case)
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Optimization with inequality constraints

Figure 19: Illustration of KKT (inequality case)
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Optimization with inequality constraints

 

Figure 20: Illustration of KKT (inequality case)
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Optimization with inequality constraints

 

Figure 21: Illustration of KKT (inequality case)
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Optimization with inequality constraints

 

Figure 22: Illustration of KKT (inequality case)
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Optimization with inequality constraints

Figure 23: Illustration of KKT (inequality case)
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Optimization with inequality constraints

 

Figure 24: Illustration of KKT (inequality case)
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Optimization with inequality constraints

So, we have a problem:

f(x) → min
x∈Rn

s.t. g(x) ≤ 0

Two possible cases:
g(x) ≤ 0 is inactive. g(x∗) < 0

• g(x∗) < 0

• ∇f(x∗) = 0
• ∇2f(x∗) > 0

g(x) ≤ 0 is active. g(x∗) = 0

• g(x∗) = 0
• Necessary conditions: −∇f(x∗) = λ∇g(x∗), λ > 0
• Sufficient conditions:

⟨y, ∇2
xxL(x∗, λ∗)y⟩ > 0, ∀y ̸= 0 ∈ Rn : ∇g(x∗)⊤y = 0
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Lagrange function for inequality constraints

Combining two possible cases, we can
write down the general conditions for the
problem:

f(x) → min
x∈Rn

s.t. g(x) ≤ 0

Let’s define the Lagrange function:

L(x, λ) = f(x) + λg(x)

The classical Karush-Kuhn-Tucker first
and second-order optimality conditions
for a local minimizer x∗, stated under
some regularity conditions, can be
written as follows.

If x∗ is a local minimum of the problem described above, then there exists
a unique Lagrange multiplier λ∗ such that:

(1) ∇xL(x∗, λ∗) = 0
(2) λ∗ ≥ 0
(3) λ∗g(x∗) = 0
(4) g(x∗) ≤ 0
(5) ∀y ∈ C(x∗) : ⟨y, ∇2

xxL(x∗, λ∗)y⟩ > 0

where C(x∗) = {y ∈ Rn|∇f(x∗)⊤y ≤ 0 and ∀i ∈ I(x∗) : ∇gi(x∗)T y ≤ 0} is the critical cone.
I(x∗) = {i | gi(x∗) = 0}
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General formulation

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

This formulation is a general problem of mathematical programming.

The solution involves constructing a Lagrange function:

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x)
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Necessary conditions

Let x∗, (λ∗, ν∗) be a solution to a mathematical programming problem with zero duality gap (the optimal value for
the primal problem p∗ is equal to the optimal value for the dual problem d∗). Let also the functions f0, fi, hi be
differentiable.

• ∇xL(x∗, λ∗, ν∗) = 0

• ∇νL(x∗, λ∗, ν∗) = 0
• λ∗

i ≥ 0, i = 1, . . . , m
• λ∗

i fi(x∗) = 0, i = 1, . . . , m
• fi(x∗) ≤ 0, i = 1, . . . , m
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differentiable.

• ∇xL(x∗, λ∗, ν∗) = 0
• ∇νL(x∗, λ∗, ν∗) = 0

• λ∗
i ≥ 0, i = 1, . . . , m

• λ∗
i fi(x∗) = 0, i = 1, . . . , m

• fi(x∗) ≤ 0, i = 1, . . . , m
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Some regularity conditions

These conditions are needed to make KKT solutions the necessary conditions. Some of them even turn necessary
conditions into sufficient (for example, Slater’s). Moreover, if you have regularity, you can write down necessary
second order conditions ⟨y, ∇2

xxL(x∗, λ∗, ν∗)y⟩ ≥ 0 with semi-definite hessian of Lagrangian.
• Slater’s condition. If for a convex problem (i.e., assuming minimization, f0, fi are convex and hi are affine),

there exists a point x such that h(x) = 0 and fi(x) < 0 (existence of a strictly feasible point), then we have a
zero duality gap and KKT conditions become necessary and sufficient.

• Linearity constraint qualification. If fi and hi are affine functions, then no other condition is needed.
• Linear independence constraint qualification. The gradients of the active inequality constraints and the

gradients of the equality constraints are linearly independent at x∗.
• For other examples, see wiki.
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Example. Projection onto a hyperplane

min 1
2∥x − y∥2, s.t. aT x = b.

Solution

Lagrangian:

L(x, ν) = 1
2∥x − y∥2 + ν(aT x − b)

Derivative of L with respect to x:

∂L

∂x = x − y + νa = 0, x = y − νa

aT x = aT y − νaT a ν = aT y − b

∥a∥2

x = y − aT y − b

∥a∥2 a
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Example. Projection onto simplex

min 1
2∥x − y∥2, s.t. x⊤1 = 1, x ≥ 0. x

KKT Conditions
The Lagrangian is given by:

L = 1
2∥x − y∥2 −

∑
i

λixi + ν(x⊤1 − 1)

Taking the derivative of L with respect to xi and writing KKT yields:

• ∂L
∂xi

= xi − yi − λi + ν = 0
• λixi = 0
• λi ≥ 0
• x⊤1 = 1, x ≥ 0

ñ Question

Solve the above conditions in O(n log n) time.

ñ Question

Solve the above conditions in O(n) time.
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References

• Lecture on KKT conditions (very intuitive explanation) in the course “Elements of Statistical Learning” @ KTH.

• One-line proof of KKT
• On the Second Order Optimality Conditions for Optimization Problems with Inequality Constraints
• On Second Order Optimality Conditions in Nonlinear Optimization
• Numerical Optimization by Jorge Nocedal and Stephen J. Wright.
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