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Affine set

Suppose x1, x2 are two points in R⋉. Then
the line passing through them is defined as
follows:

x = θx1 + (1 − θ)x2, θ ∈ R

The set A is called affine if for any x1, x2
from A the line passing through them also lies
in A, i.e.

∀θ ∈ R, ∀x1, x2 ∈ A : θx1 + (1 − θ)x2 ∈ A

ñ Example

• Rn is an affine set.

• The set of solutions {x | Ax = b}
is also an affine set.

Figure 1: Illustration of a line between two vectors x1 and x2

Convex sets v § } 3

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Affine set

Suppose x1, x2 are two points in R⋉. Then
the line passing through them is defined as
follows:

x = θx1 + (1 − θ)x2, θ ∈ R

The set A is called affine if for any x1, x2
from A the line passing through them also lies
in A, i.e.

∀θ ∈ R, ∀x1, x2 ∈ A : θx1 + (1 − θ)x2 ∈ A

ñ Example

• Rn is an affine set.
• The set of solutions {x | Ax = b}

is also an affine set.
Figure 1: Illustration of a line between two vectors x1 and x2

Convex sets v § } 3

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Cone
A non-empty set S is called a cone, if:

∀x ∈ S, θ ≥ 0 → θx ∈ S

For any point in cone it also contains beam
through this point.

Figure 2: Illustration of a coneConvex sets v § } 4
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Convex cone
The set S is called a convex cone, if:

∀x1, x2 ∈ S, θ1, θ2 ≥ 0 → θ1x1 +θ2x2 ∈ S

Convex cone is just like cone, but it is also
convex.

ñ Example

• Rn

• Affine sets, containing 0
• Ray
• Sn

+ - the set of symmetric positive
semi-definite matrices

Convex cone: set that contains all conic
combinations of points in the set

Figure 3: Illustration of a convex coneConvex sets v § } 5
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Line segment
Suppose x1, x2 are two points in Rn.
Then the line segment between them is
defined as follows:

x = θx1 + (1 − θ)x2, θ ∈ [0, 1]

Convex set contains line segment between any
two points in the set.

Figure 4: Illustration of a line segment between points x1, x2
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Convex set
The set S is called convex if for any x1, x2 from S the line segment between
them also lies in S, i.e.

∀θ ∈ [0, 1], ∀x1, x2 ∈ S : θx1 + (1 − θ)x2 ∈ S

Figure 5: Top: examples of convex sets. Bottom: examples of non-convex sets.

ñ Example

An empty set and a set from
a single vector are convex by
definition.

ñ Example

Any affine set, a ray, a line
segment - they all are convex
sets.
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Convex combination

Let x1, x2, . . . , xk ∈ S, then the point θ1x1 + θ2x2 + . . . + θkxk is called the convex combination of points

x1, x2, . . . , xk if
k∑

i=1
θi = 1, θi ≥ 0.
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Convex hull
The set of all convex combinations of points from S is called the convex hull of the set S.

conv(S) =

{
k∑

i=1

θixi | xi ∈ S,

k∑
i=1

θi = 1, θi ≥ 0

}
• The set conv(S) is the smallest convex set containing S.

• The set S is convex if and only if S = conv(S).

Figure 6: Top: convex hulls of the convex sets. Bottom: convex hull of the non-convex sets.
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Minkowski addition
The Minkowski sum of two sets of vectors S1 and S2 in Euclidean space is formed by adding each vector in S1 to
each vector in S2.

S1 + S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2}

Similarly, one can define a linear combination of the sets.

ñ Example

We will work in the R2 space. Let’s define:

S1 := {x ∈ R2 : x2
1 + x2

2 ≤ 1}

This is a unit circle centered at the origin. And:

S2 := {x ∈ R2 : −4 ≤ x1 ≤ −1, −3 ≤ x2 ≤ −1}

This represents a rectangle. The sum of the sets S1 and S2 will
form an enlarged rectangle S2 with rounded corners. The
resulting set will be convex.

Figure 7: S = S1 + S2
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Finding convexity

In practice, it is very important to understand whether a specific set is convex or not. Two approaches are used for
this depending on the context.

• By definition.

• Show that S is derived from simple convex sets using operations that preserve convexity.

Convex sets v § } 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Finding convexity

In practice, it is very important to understand whether a specific set is convex or not. Two approaches are used for
this depending on the context.

• By definition.
• Show that S is derived from simple convex sets using operations that preserve convexity.

Convex sets v § } 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Finding convexity by definition

x1, x2 ∈ S, 0 ≤ θ ≤ 1 → θx1 + (1 − θ)x2 ∈ S

ñ Example

Prove, that ball in Rn (i.e. the following set {x | ∥x − xc∥ ≤ r}) - is convex.
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Exercises

Which of the sets are convex:
• Stripe, {x ∈ Rn | α ≤ a⊤x ≤ β}

• Rectangle, {x ∈ Rn | αi ≤ xi ≤ βi, i = 1, n}
• Kleen, {x ∈ Rn | a⊤

1 x ≤ b1, a⊤
2 x ≤ b2}

• A set of points closer to a given point than a given set that does not contain a point,
{x ∈ Rn | ∥x − x0∥2 ≤ ∥x − y∥2, ∀y ∈ S ⊆ Rn}

• A set of points, which are closer to one set than another, {x ∈ Rn | dist(x, S) ≤ dist(x, T ), S, T ⊆ Rn}
• A set of points, {x ∈ Rn | x + X ⊆ S}, where S ⊆ Rn is convex and X ⊆ Rn is arbitrary.
• A set of points whose distance to a given point does not exceed a certain part of the distance to another given

point is {x ∈ Rn | ∥x − a∥2 ≤ θ∥x − b∥2, a, b ∈ Rn, 0 ≤ 1}
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Operations, that preserve convexity

The linear combination of convex sets is convex Let there be 2 convex sets Sx, Sy, let the set

S = {s | s = c1x + c2y, x ∈ Sx, y ∈ Sy, c1, c2 ∈ R}

Take two points from S: s1 = c1x1 + c2y1, s2 = c1x2 + c2y2 and prove that the segment between them
θs1 + (1 − θ)s2, θ ∈ [0, 1] also belongs to S

θs1 + (1 − θ)s2

θ(c1x1 + c2y1) + (1 − θ)(c1x2 + c2y2)

c1(θx1 + (1 − θ)x2) + c2(θy1 + (1 − θ)y2)

c1x + c2y ∈ S

Convex sets v § } 14
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The intersection of any (!) number of convex sets is convex
If the desired intersection is empty or contains one point, the property is proved by definition. Otherwise, take 2
points and a segment between them. These points must lie in all intersecting sets, and since they are all convex, the
segment between them lies in all sets and, therefore, in their intersection.

Figure 8: Intersection of halfplanes
Convex sets v § } 15
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The image of the convex set under affine mapping is convex

S ⊆ Rn convex → f(S) = {f(x) | x ∈ S} convex (f(x) = Ax + b)

Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix inequality
{x | x1A1 + . . . + xmAm ⪯ B}. Here Ai, B ∈ Sp are symmetric matrices p × p.

Note also that the prototype of the convex set under affine mapping is also convex.

S ⊆ Rm convex → f−1(S) = {x ∈ Rn | f(x) ∈ S} convex (f(x) = Ax + b)

Convex sets v § } 16
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Example

Let x ∈ R is a random variable with a given probability distribution of P(x = ai) = pi, where i = 1, . . . , n, and
a1 < . . . < an. It is said that the probability vector of outcomes of p ∈ Rn belongs to the probabilistic simplex, i.e.

P = {p | 1T p = 1, p ⪰ 0} = {p | p1 + . . . + pn = 1, pi ≥ 0}.

Determine if the following sets of p are convex:
• P(x > α) ≤ β

• E|x201| ≤ αE|x|
• E|x2| ≥ αVx ≥ α

Convex sets v § } 17
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Convex functions
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Jensen’s inequality
The function f(x), which is
defined on the convex set
S ⊆ Rn, is called convex on S, if:

f(λx1+(1−λ)x2) ≤ λf(x1)+(1−λ)f(x2)

for any x1, x2 ∈ S and 0 ≤ λ ≤ 1.
If the above inequality holds as
strict inequality x1 ̸= x2 and
0 < λ < 1, then the function is
called strictly convex on S.

Figure 9: Difference between convex and non-convex function
Convex functions v § } 19
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Jensen’s inequality

ñ Theorem

Let f(x) be a convex function on a convex set X ⊆ Rn and let xi ∈ X, 1 ≤ i ≤ m, be arbitrary points from
X. Then

f

(
m∑

i=1

λixi

)
≤

m∑
i=1

λif(xi)

for any λ = [λ1, . . . , λm] ∈ ∆m - probability simplex.

Proof

1. First, note that the point
∑m

i=1 λixi as a convex combination of points from the convex set X belongs to X.

2. We will prove this by induction. For m = 1, the statement is obviously true, and for m = 2, it follows from the
definition of a convex function.
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Jensen’s inequality
3. Assume it is true for all m up to m = k, and we will prove it for m = k + 1. Let λ ∈ ∆k + 1 and

x =
k+1∑
i=1

λixi =
k∑

i=1

λixi + λk+1xk+1.

Assuming 0 < λk+1 < 1, as otherwise, it reduces to previously considered cases, we have

x = λk+1xk+1 + (1 − λk+1)x̄,

where x̄ =
∑k

i=1 γixi and γi = λi
1−λk+1

≥ 0, 1 ≤ i ≤ k.

4. Since λ ∈ ∆k+1, then γ = [γ1, . . . , γk] ∈ ∆k. Therefore x̄ ∈ X and by the convexity of f(x) and the induction
hypothesis:

f

(
k+1∑
i=1

λixi

)
= f (λk+1xk+1 + (1 − λk+1)x̄) ≤ λk+1f(xk+1) + (1 − λk+1)f(x̄) ≤

k+1∑
i=1

λif(xi)

Thus, initial inequality is satisfied for m = k + 1 as well.
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Jensen’s inequality
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i=1
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Examples of convex functions

• f(x) = xp, p > 1, x ∈ R+

• f(x) = ∥x∥p, p > 1, x ∈ Rn

• f(x) = ecx, c ∈ R, x ∈ R
• f(x) = − ln x, x ∈ R++
• f(x) = x ln x, x ∈ R++
• The sum of the largest k coordinates f(x) = x(1) + . . . + x(k), x ∈ Rn

• f(X) = λmax(X), X = XT

• f(X) = − log det X, X ∈ Sn
++
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Epigraph
For the function f(x), defined on S ⊆ Rn, the following
set:

epi f = {[x, µ] ∈ S × R : f(x) ≤ µ}

is called epigraph of the function f(x).

ñ Convexity of the epigraph is the convexity of the
function

For a function f(x), defined on a convex set X, to
be convex on X, it is necessary and sufficient that
the epigraph of f is a convex set.

Figure 10: Epigraph of a function

Convex functions v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Convexity of the epigraph is the convexity of the function
1. Necessity: Assume f(x) is convex on X. Take any two arbitrary points [x1, µ1] ∈ epif and [x2, µ2] ∈ epif .

Also take 0 ≤ λ ≤ 1 and denote xλ = λx1 + (1 − λ)x2, µλ = λµ1 + (1 − λ)µ2. Then,

λ

[
x1
µ1

]
+ (1 − λ)

[
x2
µ2

]
=
[

xλ

µλ

]
.

From the convexity of the set X, it follows that xλ ∈ X. Moreover, since f(x) is a convex function,

f(xλ) ≤ λf(x1) + (1 − λ)f(x2) ≤ λµ1 + (1 − λ)µ2 = µλ

Inequality above indicates that
[

xλ

µλ

]
∈ epif . Thus, the epigraph of f is a convex set.

2. Sufficiency: Assume the epigraph of f , epif , is a convex set. Then, from the membership of the points [x1, µ1]
and [x2, µ2] in the epigraph of f , it follows that[

xλ

µλ

]
= λ

[
x1
µ1

]
+ (1 − λ)

[
x2
µ2

]
∈ epif

for any 0 ≤ λ ≤ 1, i.e., f(xλ) ≤ µλ = λµ1 + (1 − λ)µ2. But this is true for all µ1 ≥ f(x1) and µ2 ≥ f(x2),
particularly when µ1 = f(x1) and µ2 = f(x2). Hence we arrive at the inequality

f(xλ) = f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2).

Since points x1 ∈ X and x2 ∈ X can be arbitrarily chosen, f(x) is a convex function on X.
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Sublevel set
For the function f(x), defined on S ⊆ Rn, the following
set:

Lβ = {x ∈ S : f(x) ≤ β}

is called sublevel set or Lebesgue set of the function f(x).

Figure 11: Sublevel set of a function with respect to level β

Convex functions v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Connection with epigraph

The function is convex if and only if its epigraph is a convex set.

ñ Example

Let a norm ∥ · ∥ be defined in the space U . Consider the set:

K := {(x, t) ∈ U × R+ : ∥x∥ ≤ t}

which represents the epigraph of the function x 7→ ∥x∥. This set is called the cone norm. According to the
statement above, the set K is convex.
In the case where U = Rn and ∥x∥ = ∥x∥2 (Euclidean norm), the abstract set K transitions into the set:

{(x, t) ∈ Rn × R+ : ∥x∥2 ≤ t}
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Connection with sublevel set

If f(x) - is a convex function defined on the convex set S ⊆ Rn, then for any β sublevel set Lβ is convex.

The function f(x) defined on the convex set S ⊆ Rn is closed if and only if for any β sublevel set Lβ is closed.
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Reduction to a line

f : S → R is convex if and only if S is a convex set and the function g(t) = f(x + tv) defined on {t | x + tv ∈ S} is
convex for any x ∈ S, v ∈ Rn, which allows checking convexity of the scalar function to establish convexity of the
vector function.
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Strong convexity criteria
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First-order differential criterion of convexity
The differentiable function f(x) defined on the convex set
S ⊆ Rn is convex if and only if ∀x, y ∈ S:

f(y) ≥ f(x) + ∇fT (x)(y − x)

Let y = x + ∆x, then the criterion will become more tractable:

f(x + ∆x) ≥ f(x) + ∇fT (x)∆x

Figure 12: Convex function is greater or equal than
Taylor linear approximation at any point
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Second-order differential criterion of convexity

Twice differentiable function f(x) defined on the convex set S ⊆ Rn is convex if and only if ∀x ∈ int(S) ̸= ∅:

∇2f(x) ⪰ 0

In other words, ∀y ∈ Rn:

⟨y, ∇2f(x)y⟩ ≥ 0
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Tools for discovering convexity

• Definition (Jensen’s inequality)

• Differential criteria of convexity
• Operations, that preserve convexity
• Connection with epigraph

The function is convex if and only if its epigraph is a convex set.
• Connection with sublevel set

If f(x) - is a convex function defined on the convex set S ⊆ Rn, then for any β sublevel set Lβ is convex.

The function f(x) defined on the convex set S ⊆ Rn is closed if and only if for any β sublevel set Lβ is closed.
• Reduction to a line

f : S → R is convex if and only if S is a convex set and the function g(t) = f(x + tv) defined on
{t | x + tv ∈ S} is convex for any x ∈ S, v ∈ Rn, which allows checking convexity of the scalar function to
establish convexity of the vector function.
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Example: norm cone
Let a norm ∥ · ∥ be defined in the space U . Consider the set:

K := {(x, t) ∈ U × R+ : ∥x∥ ≤ t}

which represents the epigraph of the function x 7→ ∥x∥. This set is called the cone norm. According to the
statement above, the set K is convex. 3Code for the figures
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Figure 13: Norm cones for different p - norms
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Strong convexity
f(x), defined on the convex set S ⊆ Rn, is called µ-strongly
convex (strongly convex) on S, if:

f(λx1+(1−λ)x2) ≤ λf(x1)+(1−λ)f(x2)−µ

2 λ(1−λ)∥x1−x2∥2

for any x1, x2 ∈ S and 0 ≤ λ ≤ 1 for some µ > 0.

Figure 14: Strongly convex function is greater or equal
than Taylor quadratic approximation at any point
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First-order differential criterion of strong convexity
Differentiable f(x) defined on the convex set S ⊆ Rn is µ-strongly convex if and only if ∀x, y ∈ S:

f(y) ≥ f(x) + ∇fT (x)(y − x) + µ

2 ∥y − x∥2

Let y = x + ∆x, then the criterion will become more tractable:

f(x + ∆x) ≥ f(x) + ∇fT (x)∆x + µ

2 ∥∆x∥2

ñ Theorem

Let f(x) be a differentiable function on a convex set X ⊆ Rn. Then f(x) is strongly convex on X with a
constant µ > 0 if and only if

f(x) − f(x0) ≥ ⟨∇f(x0), x − x0⟩ + µ

2 ∥x − x0∥2

for all x, x0 ∈ X.
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Proof of first-order differential criterion of strong convexity

Necessity: Let 0 < λ ≤ 1. According to the definition of a strongly convex function,

f(λx + (1 − λ)x0) ≤ λf(x) + (1 − λ)f(x0) − µ

2 λ(1 − λ)∥x − x0∥2

or equivalently,

f(x) − f(x0) − µ

2 (1 − λ)∥x − x0∥2 ≥ 1
λ

[f(λx + (1 − λ)x0) − f(x0)] =

= 1
λ

[f(x0 + λ(x − x0)) − f(x0)] = 1
λ

[λ⟨∇f(x0), x − x0⟩ + o(λ)] =

= ⟨∇f(x0), x − x0⟩ + o(λ)
λ

.

Thus, taking the limit as λ ↓ 0, we arrive at the initial statement.
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Proof of first-order differential criterion of strong convexity
Sufficiency: Assume the inequality in the theorem is satisfied for all x, x0 ∈ X. Take x0 = λx1 + (1 − λ)x2, where
x1, x2 ∈ X, 0 ≤ λ ≤ 1. According to the inequality, the following inequalities hold:

f(x1) − f(x0) ≥ ⟨∇f(x0), x1 − x0⟩ + µ

2 ∥x1 − x0∥2,

f(x2) − f(x0) ≥ ⟨∇f(x0), x2 − x0⟩ + µ

2 ∥x2 − x0∥2.

Multiplying the first inequality by λ and the second by 1 − λ and adding them, considering that

x1 − x0 = (1 − λ)(x1 − x2), x2 − x0 = λ(x2 − x1),

and λ(1 − λ)2 + λ2(1 − λ) = λ(1 − λ), we get

λf(x1) + (1 − λ)f(x2) − f(x0) − µ

2 λ(1 − λ)∥x1 − x2∥2 ≥

⟨∇f(x0), λx1 + (1 − λ)x2 − x0⟩ = 0.

Thus, inequality from the definition of a strongly convex function is satisfied. It is important to mention, that µ = 0
stands for the convex case and corresponding differential criterion.
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Second-order differential criterion of strong convexity
Twice differentiable function f(x) defined on the convex set S ⊆ Rn is called µ-strongly convex if and only if
∀x ∈ int(S) ̸= ∅:

∇2f(x) ⪰ µI

In other words:

⟨y, ∇2f(x)y⟩ ≥ µ∥y∥2

ñ Theorem

Let X ⊆ Rn be a convex set, with intX ̸= ∅. Furthermore, let f(x) be a twice continuously differentiable
function on X. Then f(x) is strongly convex on X with a constant µ > 0 if and only if

⟨y, ∇2f(x)y⟩ ≥ µ∥y∥2

for all x ∈ X and y ∈ Rn.
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ñ Theorem

Let X ⊆ Rn be a convex set, with intX ≠ ∅. Furthermore, let f(x) be a twice continuously differentiable
function on X. Then f(x) is strongly convex on X with a constant µ > 0 if and only if

⟨y, ∇2f(x)y⟩ ≥ µ∥y∥2

for all x ∈ X and y ∈ Rn.

Strong convexity criteria v § } 38

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Proof of second-order differential criterion of strong convexity

The target inequality is trivial when y = 0n, hence we assume y ̸= 0n.

Necessity: Assume initially that x is an interior point of X. Then x + αy ∈ X for all y ∈ Rn and sufficiently small
α. Since f(x) is twice differentiable,

f(x + αy) = f(x) + α⟨∇f(x), y⟩ + α2

2 ⟨y, ∇2f(x)y⟩ + o(α2).

Based on the first order criterion of strong convexity, we have

α2

2 ⟨y, ∇2f(x)y⟩ + o(α2) = f(x + αy) − f(x) − α⟨∇f(x), y⟩ ≥ µ

2 α2∥y∥2.

This inequality reduces to the target inequality after dividing both sides by α2 and taking the limit as α ↓ 0.

If x ∈ X but x /∈ intX, consider a sequence {xk} such that xk ∈ intX and xk → x as k → ∞. Then, we arrive at
the target inequality after taking the limit.
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Proof of second-order differential criterion of strong convexity

Sufficiency: Using Taylor’s formula with the Lagrange remainder and the target inequality, we obtain for x + y ∈ X:

f(x + y) − f(x) − ⟨∇f(x), y⟩ = 1
2 ⟨y, ∇2f(x + αy)y⟩ ≥ µ

2 ∥y∥2,

where 0 ≤ α ≤ 1. Therefore,

f(x + y) − f(x) ≥ ⟨∇f(x), y⟩ + µ

2 ∥y∥2.

Consequently, by the first order criterion of strong convexity, the function f(x) is strongly convex with a constant µ.
It is important to mention, that µ = 0 stands for the convex case and corresponding differential criterion.
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Convex and concave function

ñ Example

Show, that f(x) = c⊤x + b is convex and concave.
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Simplest strongly convex function

ñ Example

Show, that f(x) = x⊤Ax, where A ⪰ 0 - is convex on Rn. Is it strongly convex?
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Convexity and continuity
Let f(x) - be a convex function on a convex set S ⊆ Rn.
Then f(x) is continuous ∀x ∈ ri(S). a

ñ Proper convex function

Function f : Rn → R is said to be proper convex
function if it never takes on the value −∞ and not
identically equal to ∞.

ñ Indicator function

δS(x) =
{

∞, x ∈ S,

0, x /∈ S,

is a proper convex function.

aPlease, read here about difference between interior and relative
interior.

ñ Closed function

Function f : Rn → R is said to be closed if for each
α ∈ R, the sublevel set is a closed set.
Equivalently, if the epigraph is closed, then the func-
tion f is closed.

Figure 15: The concept of a closed function is introduced to
avoid such breaches at the border.
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Facts about convexity
• f(x) is called (strictly, strongly) concave, if the function −f(x) - is (strictly, strongly) convex.

• Jensen’s inequality for the convex functions:

f

(
n∑

i=1

αixi

)
≤

n∑
i=1

αif(xi)

for αi ≥ 0;
n∑

i=1
αi = 1 (probability simplex)

For the infinite dimension case:

f

∫
S

xp(x)dx

 ≤
∫
S

f(x)p(x)dx

If the integrals exist and p(x) ≥ 0,
∫
S

p(x)dx = 1.

• If the function f(x) and the set S are convex, then any local minimum x∗ = arg min
x∈S

f(x) will be the global
one. Strong convexity guarantees the uniqueness of the solution.
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Operations that preserve convexity
• Non-negative sum of the convex functions:

αf(x) + βg(x), (α ≥ 0, β ≥ 0).

• Composition with affine function f(Ax + b) is
convex, if f(x) is convex.

• Pointwise maximum (supremum) of any number of
functions: If f1(x), . . . , fm(x) are convex, then
f(x) = max{f1(x), . . . , fm(x)} is convex.

• If f(x, y) is convex on x for any y ∈ Y :
g(x) = sup

y∈Y

f(x, y) is convex.

• If f(x) is convex on S, then g(x, t) = tf(x/t) - is
convex with x/t ∈ S, t > 0.

• Let f1 : S1 → R and f2 : S2 → R, where
range(f1) ⊆ S2. If f1 and f2 are convex, and f2 is
increasing, then f2 ◦ f1 is convex on S1.

Figure 16: Pointwise maximum (supremum) of convex
functions is convex
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Maximum eigenvalue of a matrix is a convex function

ñ Example

Show, that f(A) = λmax(A) - is convex, if A ∈ Sn.
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Other forms of convexity

• Log-convexity: log f is convex; Log convexity implies convexity.

• Log-concavity: log f concave; not closed under addition!
• Exponential convexity: [f(xi + xj)] ⪰ 0, for x1, . . . , xn

• Operator convexity: f(λX + (1 − λ)Y )
• Quasiconvexity: f(λx + (1 − λ)y) ≤ max{f(x), f(y)}
• Pseudoconvexity: ⟨∇f(y), x − y⟩ ≥ 0 −→ f(x) ≥ f(y)
• Discrete convexity: f : Zn → Z; “convexity + matroid theory.”
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Polyak- Lojasiewicz condition. Linear convergence of gradient descent without
convexity
PL inequality holds if the following condition is satisfied for some µ > 0,

∥∇f(x)∥2 ≥ 2µ(f(x) − f∗)∀x

It is interesting, that Gradient Descent algorithm has linear convergence under this condition (you do not even need
convexity here).

The following functions satisfy the PL-condition, but are not convex. 3Link to the code

f(x) = x2 + 3 sin2(x)

3 2 1 0 1 2 3
x
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f(x
)

Function, that satisfies
 Polyak- Lojasiewicz condition

f(x) = x2 + 3sin2(x)

Figure 17: PL function

f(x, y) = (y − sin x)2
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Figure 18: PL function
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Polyak- Lojasiewicz condition. Linear convergence of gradient descent without
convexity
PL inequality holds if the following condition is satisfied for some µ > 0,

∥∇f(x)∥2 ≥ 2µ(f(x) − f∗)∀x

It is interesting, that Gradient Descent algorithm has linear convergence under this condition (you do not even need
convexity here).

The following functions satisfy the PL-condition, but are not convex. 3Link to the code

f(x) = x2 + 3 sin2(x)

3 2 1 0 1 2 3
x
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)

Function, that satisfies
 Polyak- Lojasiewicz condition

f(x) = x2 + 3sin2(x)

Figure 17: PL function
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Convexity in ML
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Convex optimization problem

Figure 19: The idea behind the definition of a convex
optimization problem

Note, that there is an agreement in notation of
mathematical programming. The problems of the
following type are called Convex optimization problem:

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, . . . , m

Ax = b,

(COP)

where all the functions f0(x), f1(x), . . . , fm(x) are convex
and all the equality constraints are affine. It sounds a bit
strange, but not all convex problems are convex
optimization problems.

f0(x) → min
x∈S

, (CP)

where f0(x) is a convex function, defined on the convex
set S. The necessity of affine equality constraint is
essential.
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Linear Least Squares aka Linear Regression

Figure 20: Illustration

In a least-squares, or linear regression, problem, we have measurements X ∈ Rm×n and y ∈ Rm and seek a vector
θ ∈ Rn such that Xθ is close to y. Closeness is defined as the sum of the squared differences:

m∑
i=1

(x⊤
i θ − yi)2 = ∥Xθ − y∥2

2 → min
θ∈Rn

For example, we might have a dataset of m users, each represented by n features. Each row x⊤
i of X is the features

for user i, while the corresponding entry yi of y is the measurement we want to predict from x⊤
i , such as ad

spending. The prediction is given by x⊤
i θ.
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Linear Least Squares aka Linear Regression 1

1. Is this problem convex? Strongly convex?

2. What do you think about convergence of Gradient Descent for this problem?

1Take a look at the 3example of real-world data linear least squares problem
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l2-regularized Linear Least Squares

In the underdetermined case, it is often desirable to restore strong convexity of the objective function by adding an
l2-penality, also known as Tikhonov regularization, l2-regularization, or weight decay.

∥Xθ − y∥2
2 + µ

2 ∥θ∥2
2 → min

θ∈Rn

Note: With this modification the objective is µ-strongly convex again.

Take a look at the 3code
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Neural networks?
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Visualizing loss surface of neural network via line projection

We denote the initial point as w0, representing the weights of the neural network at initialization. The weights after
training are denoted as ŵ.

Initially, we generate a random Gaussian direction w1 ∈ Rp, which inherits the magnitude of the original neural
network weights for each parameter group. Subsequently, we sample the training and testing loss surfaces at points
along the direction w1, situated close to either w0 or ŵ.

Mathematically, this involves evaluating:

L(α) = L(w0 + αw1), where α ∈ [−b, b].

Here, α plays the role of a coordinate along the w1 direction, and b stands for the bounds of interpolation.
Visualizing L(α) enables us to project the p-dimensional surface onto a one-dimensional axis.

It is important to note that the characteristics of the resulting graph heavily rely on the chosen projection direction.
It’s not feasible to maintain the entirety of the information when transforming a space with 100,000 dimensions into
a one-dimensional line through projection. However, certain properties can still be established. For instance, if
L(α) |α=0 is decreasing, this indicates that the point lies on a slope. Additionally, if the projection is non-convex, it
implies that the original surface was not convex.
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Visualizing loss surface of neural network

Figure 21: 3Open in colab
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Visualizing loss surface of neural network

Figure 22: 3Open in colab
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Plane projection
We can explore this idea further and draw the projection of the loss surface to the plane, which is defined by 2
random vectors. Note, that with 2 random gaussian vectors in the huge dimensional space are almost certainly
orthogonal. So, as previously, we generate random normalized gaussian vectors w1, w2 ∈ Rp and evaluate the loss
function

L(α, β) = L(w0 + αw1 + βw2), where α, β ∈ [−b, b]2.
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Can plane projections be useful? 2

Figure 24: The loss surface of ResNet-56
without skip connections Figure 25: The loss surface of ResNet-56 with skip connections

2Visualizing the Loss Landscape of Neural Nets, Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, Tom Goldstein
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Can plane projections be useful, really? 3

Figure 26: Examples of a loss landscape of a typical CNN model on FashionMNIST and CIFAR10 datasets found with MPO.
Loss values are color-coded according to a logarithmic scale

3Loss Landscape Sightseeing with Multi-Point Optimization, Ivan Skorokhodov, Mikhail Burtsev
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