
Matrix differentiation. Automatic
differentiation. Checkpointintg.

Daniil Merkulov

Applied Math for Data Science. Sberuniversity.

v § } 1

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix calculus

Matrix calculus v § } 2

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient

Let f(x) : Rn → R, then vector, which contains all first-order partial
derivatives:

∇f(x) = df

dx
=

∂f

∂x1
∂f

∂x2
...

∂f
∂xn

named gradient of f(x). This vector indicates the direction of the
steepest ascent. Thus, vector −∇f(x) means the direction of the
steepest descent of the function in the point. Moreover, the gradient
vector is always orthogonal to the contour line in the point.

ñ Example

For the function f(x, y) = x2 + y2, the
gradient is:

∇f(x, y) =
[

2x
2y

]
This gradient points in the direction of
the steepest ascent of the function.

ñ Question

How does the magnitude of the gradient
relate to the steepness of the function?

Matrix calculus v § } 3

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient

Let f(x) : Rn → R, then vector, which contains all first-order partial
derivatives:

∇f(x) = df

dx
=

∂f

∂x1
∂f

∂x2
...

∂f
∂xn

named gradient of f(x). This vector indicates the direction of the
steepest ascent. Thus, vector −∇f(x) means the direction of the
steepest descent of the function in the point. Moreover, the gradient
vector is always orthogonal to the contour line in the point.

ñ Example

For the function f(x, y) = x2 + y2, the
gradient is:

∇f(x, y) =
[

2x
2y

]
This gradient points in the direction of
the steepest ascent of the function.

ñ Question

How does the magnitude of the gradient
relate to the steepness of the function?

Matrix calculus v § } 3

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Hessian
Let f(x) : Rn → R, then matrix, containing all the second order
partial derivatives:

f ′′(x) = ∇2f(x) = ∂2f

∂xi∂xj
=

∂2f

∂x1∂x1
∂2f

∂x1∂x2
. . . ∂2f

∂x1∂xn
∂2f

∂x2∂x1
∂2f

∂x2∂x2
. . . ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂xn∂xn

In fact, Hessian could be a tensor in such a way: (f(x) : Rn → Rm)
is just 3d tensor, every slice is just hessian of corresponding scalar
function

(
∇2f1(x), . . . , ∇2fm(x)

)
.

ñ Example

For the function f(x, y) = x2 + y2, the
Hessian is:

Hf (x, y) =
[

2 0
0 2

]
This matrix provides information about the
curvature of the function in different
directions.

ñ Question

How can the Hessian matrix be used to
determine the concavity or convexity of
a function?

Matrix calculus v § } 4

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Hessian
Let f(x) : Rn → R, then matrix, containing all the second order
partial derivatives:

f ′′(x) = ∇2f(x) = ∂2f

∂xi∂xj
=

∂2f

∂x1∂x1
∂2f

∂x1∂x2
. . . ∂2f

∂x1∂xn
∂2f

∂x2∂x1
∂2f

∂x2∂x2
. . . ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂xn∂xn

In fact, Hessian could be a tensor in such a way: (f(x) : Rn → Rm)
is just 3d tensor, every slice is just hessian of corresponding scalar
function

(
∇2f1(x), . . . , ∇2fm(x)

)
.

ñ Example

For the function f(x, y) = x2 + y2, the
Hessian is:

Hf (x, y) =
[

2 0
0 2

]
This matrix provides information about the
curvature of the function in different
directions.

ñ Question

How can the Hessian matrix be used to
determine the concavity or convexity of
a function?

Matrix calculus v § } 4

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Schwartz theorem
Let f : Rn → R be a function. If the mixed partial
derivatives ∂2f

∂xi∂xj
and ∂2f

∂xj ∂xi
are both continuous on an

open set containing a point a, then they are equal at the
point a. That is,

∂2f

∂xi∂xj
(a) = ∂2f

∂xj∂xi
(a)

Given the Schwartz theorem, if the mixed partials are
continuous on an open set, the Hessian matrix is
symmetric. That means the entries above the main
diagonal mirror those below the main diagonal:

∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
∇2f(x) = (∇2f(x))T

This symmetry simplifies computations and analysis
involving the Hessian matrix in various applications,
particularly in optimization.

ñ Schwartz counterexample

f(x, y) =

{
xy(x2−y2)

x2+y2 for (x, y) ̸= (0, 0),
0 for (x, y) = (0, 0).

Counterexample ♣

−2

−1

0

1

2

One can verify, that ∂2f
∂x∂y

(0, 0) ̸= ∂2f
∂y∂x

(0, 0), al-
though the mixed partial derivatives do exist, and
at every other point the symmetry does hold.

Matrix calculus v § } 5

https://fmin.xyz/docs/theory/Matrix_calculus.html#hessian
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Schwartz theorem
Let f : Rn → R be a function. If the mixed partial
derivatives ∂2f

∂xi∂xj
and ∂2f

∂xj ∂xi
are both continuous on an

open set containing a point a, then they are equal at the
point a. That is,

∂2f

∂xi∂xj
(a) = ∂2f

∂xj∂xi
(a)

Given the Schwartz theorem, if the mixed partials are
continuous on an open set, the Hessian matrix is
symmetric. That means the entries above the main
diagonal mirror those below the main diagonal:

∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
∇2f(x) = (∇2f(x))T

This symmetry simplifies computations and analysis
involving the Hessian matrix in various applications,
particularly in optimization.

ñ Schwartz counterexample

f(x, y) =

{
xy(x2−y2)

x2+y2 for (x, y) ̸= (0, 0),
0 for (x, y) = (0, 0).

Counterexample ♣

−2

−1

0

1

2

One can verify, that ∂2f
∂x∂y

(0, 0) ̸= ∂2f
∂y∂x

(0, 0), al-
though the mixed partial derivatives do exist, and
at every other point the symmetry does hold.

Matrix calculus v § } 5

https://fmin.xyz/docs/theory/Matrix_calculus.html#hessian
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Jacobian
The extension of the gradient of multidimensional
f(x) : Rn → Rm is the following matrix:

Jf = f ′(x) = df

dxT
=

∂f1
∂x1

∂f2
∂x1

. . . ∂fm
∂x1

∂f1
∂x2

∂f2
∂x2

. . . ∂fm
∂x2

...
...

. . .
...

∂f1
∂xn

∂f2
∂xn

. . . ∂fm
∂xn

This matrix provides information about the rate of change
of the function with respect to its inputs.

ñ Question

Can we somehow connect those three definitions
above (gradient, jacobian, and hessian) using a sin-
gle correct statement?

ñ Example

For the function

f(x, y) =
[

x + y
x − y

]
,

the Jacobian is:

Jf (x, y) =
[

1 1
1 −1

]

ñ Question

How does the Jacobian matrix relate to the gradient
for scalar-valued functions?

Matrix calculus v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Summary

f(x) : X → Y ; ∂f(x)
∂x

∈ G

X Y G Name
R R R f ′(x) (derivative)
Rn R Rn ∂f

∂xi
(gradient)

Rn Rm Rn×m ∂fi

∂xj
(jacobian)

Rm×n R Rm×n ∂f

∂xij

Matrix calculus v § } 7

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differentials

ñ Theorem

Let x ∈ S be an interior point of the set S, and let D : U → V be a linear operator. We say that the
function f is differentiable at the point x with derivative D if for all sufficiently small h ∈ U the following
decomposition holds:

f(x + h) = f(x) + D[h] + o(∥h∥)

If for any linear operator D : U → V the function f is not differentiable at the point x with derivative D,
then we say that f is not differentiable at the point x.

Matrix calculus v § } 8

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differentials

After obtaining the differential notation of df we can retrieve the gradient using the following formula:

df(x) = ⟨∇f(x), dx⟩

Then, if we have a differential of the above form and we need to calculate the second derivative of the matrix/vector
function, we treat “old” dx as the constant dx1, then calculate d(df) = d2f(x)

d2f(x) = ⟨∇2f(x)dx1, dx⟩ = ⟨Hf (x)dx1, dx⟩

Matrix calculus v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differentials

After obtaining the differential notation of df we can retrieve the gradient using the following formula:

df(x) = ⟨∇f(x), dx⟩

Then, if we have a differential of the above form and we need to calculate the second derivative of the matrix/vector
function, we treat “old” dx as the constant dx1, then calculate d(df) = d2f(x)

d2f(x) = ⟨∇2f(x)dx1, dx⟩ = ⟨Hf (x)dx1, dx⟩

Matrix calculus v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0

• d(αX) = α(dX)
• d(AXB) = A(dX)B
• d(X + Y) = dX + dY
• d(XT) = (dX)T

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1

Matrix calculus v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0
• d(αX) = α(dX)

• d(AXB) = A(dX)B
• d(X + Y) = dX + dY
• d(XT) = (dX)T

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1

Matrix calculus v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B

• d(X + Y) = dX + dY
• d(XT) = (dX)T

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1

Matrix calculus v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B
• d(X + Y) = dX + dY

• d(XT) = (dX)T

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1

Matrix calculus v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B
• d(X + Y) = dX + dY
• d(XT) = (dX)T

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1

Matrix calculus v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B
• d(X + Y) = dX + dY
• d(XT) = (dX)T

• d(XY) = (dX)Y + X(dY)

• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1

Matrix calculus v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B
• d(X + Y) = dX + dY
• d(XT) = (dX)T

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1

Matrix calculus v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B
• d(X + Y) = dX + dY
• d(XT) = (dX)T

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1

Matrix calculus v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B
• d(X + Y) = dX + dY
• d(XT) = (dX)T

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩

• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1

Matrix calculus v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B
• d(X + Y) = dX + dY
• d(XT) = (dX)T

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩
• d (tr X) = ⟨I, dX⟩

• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1

Matrix calculus v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B
• d(X + Y) = dX + dY
• d(XT) = (dX)T

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1

Matrix calculus v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B
• d(X + Y) = dX + dY
• d(XT) = (dX)T

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1

Matrix calculus v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Differential properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).
• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B
• d(X + Y) = dX + dY
• d(XT) = (dX)T

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

• d

(
X

ϕ

)
= ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X−T , dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
· dg(x)

• H = (J(∇f))T

• d(X−1) = −X−1(dX)X−1

Matrix calculus v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix calculus. Example 1

ñ Example

Find df, ∇f(x), if f(x) = ⟨x, Ax⟩ − bT x + c.

Matrix calculus v § } 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix calculus. Example 2

ñ Example

Find df, ∇f(x), if f(x) = ln⟨x, Ax⟩.

1. It is essential for A to be positive definite, because it is a logarithm argument. So, A ∈ Sn
++Let’s find the

differential first:

df = d (ln⟨x, Ax⟩) = d (⟨x, Ax⟩)
⟨x, Ax⟩ = ⟨dx, Ax⟩ + ⟨x, d(Ax)⟩

⟨x, Ax⟩ =

= ⟨Ax, dx⟩ + ⟨x, Adx⟩
⟨x, Ax⟩ = ⟨Ax, dx⟩ + ⟨AT x, dx⟩

⟨x, Ax⟩ = ⟨(A + AT)x, dx⟩
⟨x, Ax⟩

2. Note, that our main goal is to derive the form df = ⟨·, dx⟩

df =
〈

2Ax

⟨x, Ax⟩ , dx

〉
Hence, the gradient is ∇f(x) = 2Ax

⟨x, Ax⟩

Matrix calculus v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix calculus. Example 2

ñ Example

Find df, ∇f(x), if f(x) = ln⟨x, Ax⟩.

1. It is essential for A to be positive definite, because it is a logarithm argument. So, A ∈ Sn
++Let’s find the

differential first:

df = d (ln⟨x, Ax⟩) = d (⟨x, Ax⟩)
⟨x, Ax⟩ = ⟨dx, Ax⟩ + ⟨x, d(Ax)⟩

⟨x, Ax⟩ =

= ⟨Ax, dx⟩ + ⟨x, Adx⟩
⟨x, Ax⟩ = ⟨Ax, dx⟩ + ⟨AT x, dx⟩

⟨x, Ax⟩ = ⟨(A + AT)x, dx⟩
⟨x, Ax⟩

2. Note, that our main goal is to derive the form df = ⟨·, dx⟩

df =
〈

2Ax

⟨x, Ax⟩ , dx

〉
Hence, the gradient is ∇f(x) = 2Ax

⟨x, Ax⟩

Matrix calculus v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix calculus. Example 3

ñ Example

Find df, ∇f(X), if f(X) = ⟨S, X⟩ − log det X.

Matrix calculus v § } 13

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Automatic differentiation

Automatic differentiation v § } 14

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Figure 1: When you got the idea

Figure 2: This is not autograd

Problem

Suppose we need to solve the following problem:

L(w) → min
w∈Rd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇wL =
(

∂L
∂w1

, . . . , ∂L
∂wd

)T

.
• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods

require too much memory.

Automatic differentiation v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Problem

Suppose we need to solve the following problem:

L(w) → min
w∈Rd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇wL =
(

∂L
∂w1

, . . . , ∂L
∂wd

)T

.
• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods

require too much memory.

Automatic differentiation v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Problem

Suppose we need to solve the following problem:

L(w) → min
w∈Rd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇wL =
(

∂L
∂w1

, . . . , ∂L
∂wd

)T

.
• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods

require too much memory.

Automatic differentiation v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Problem

Suppose we need to solve the following problem:

L(w) → min
w∈Rd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇wL =
(

∂L
∂w1

, . . . , ∂L
∂wd

)T

.

• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods
require too much memory.

Automatic differentiation v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Problem

Suppose we need to solve the following problem:

L(w) → min
w∈Rd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇wL =
(

∂L
∂w1

, . . . , ∂L
∂wd

)T

.
• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods

require too much memory.

Automatic differentiation v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for N d-dimensional objects D ∈ RN×N . Given this matrix, our goal is
to recover the initial coordinates Wi ∈ Rd, i = 1, . . . , N .

L(W) =
N∑

i,j=1

(
∥Wi − Wj∥2

2 − Di,j

)2 → min
W ∈RN×d

Link to a nice visualization ♣, where one can see, that gradient-free methods handle this problem much slower,
especially in higher dimensions.

ñ Question

Is it somehow connected with PCA?

Automatic differentiation v § } 18

http://www.benfrederickson.com/numerical-optimization/
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for N d-dimensional objects D ∈ RN×N . Given this matrix, our goal is
to recover the initial coordinates Wi ∈ Rd, i = 1, . . . , N .

L(W) =
N∑

i,j=1

(
∥Wi − Wj∥2

2 − Di,j

)2 → min
W ∈RN×d

Link to a nice visualization ♣, where one can see, that gradient-free methods handle this problem much slower,
especially in higher dimensions.

ñ Question

Is it somehow connected with PCA?

Automatic differentiation v § } 18

http://www.benfrederickson.com/numerical-optimization/
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for N d-dimensional objects D ∈ RN×N . Given this matrix, our goal is
to recover the initial coordinates Wi ∈ Rd, i = 1, . . . , N .

L(W) =
N∑

i,j=1

(
∥Wi − Wj∥2

2 − Di,j

)2 → min
W ∈RN×d

Link to a nice visualization ♣, where one can see, that gradient-free methods handle this problem much slower,
especially in higher dimensions.

ñ Question

Is it somehow connected with PCA?

Automatic differentiation v § } 18

http://www.benfrederickson.com/numerical-optimization/
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

L(w) → min
w∈Rd

with the Gradient Descent (GD) algorithm:

wk+1 = wk − αk∇wL(wk)

Is it possible to replace ∇wL(wk) using only zero-order
information?
Yes, but at a cost.
One can consider 2-point gradient estimatora G:

G = d
L(w + εv) − L(w − εv)

2ε
v,

where v is spherically symmetric.

aI suggest a nice presentation about gradient-free methods

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
GD
2-P Estimator GD
Start Point
Optimal Point

Figure 3: “Illustration of two-point estimator of Gradient
Descent”

Automatic differentiation v § } 19

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

L(w) → min
w∈Rd

with the Gradient Descent (GD) algorithm:

wk+1 = wk − αk∇wL(wk)

Is it possible to replace ∇wL(wk) using only zero-order
information?
Yes, but at a cost.
One can consider 2-point gradient estimatora G:

G = d
L(w + εv) − L(w − εv)

2ε
v,

where v is spherically symmetric.

aI suggest a nice presentation about gradient-free methods

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
GD
2-P Estimator GD
Start Point
Optimal Point

Figure 3: “Illustration of two-point estimator of Gradient
Descent”

Automatic differentiation v § } 19

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

L(w) → min
w∈Rd

with the Gradient Descent (GD) algorithm:

wk+1 = wk − αk∇wL(wk)

Is it possible to replace ∇wL(wk) using only zero-order
information?

Yes, but at a cost.
One can consider 2-point gradient estimatora G:

G = d
L(w + εv) − L(w − εv)

2ε
v,

where v is spherically symmetric.

aI suggest a nice presentation about gradient-free methods

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
GD
2-P Estimator GD
Start Point
Optimal Point

Figure 3: “Illustration of two-point estimator of Gradient
Descent”

Automatic differentiation v § } 19

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

L(w) → min
w∈Rd

with the Gradient Descent (GD) algorithm:

wk+1 = wk − αk∇wL(wk)

Is it possible to replace ∇wL(wk) using only zero-order
information?
Yes, but at a cost.

One can consider 2-point gradient estimatora G:

G = d
L(w + εv) − L(w − εv)

2ε
v,

where v is spherically symmetric.
aI suggest a nice presentation about gradient-free methods

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
GD
2-P Estimator GD
Start Point
Optimal Point

Figure 3: “Illustration of two-point estimator of Gradient
Descent”

Automatic differentiation v § } 19

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

L(w) → min
w∈Rd

with the Gradient Descent (GD) algorithm:

wk+1 = wk − αk∇wL(wk)

Is it possible to replace ∇wL(wk) using only zero-order
information?
Yes, but at a cost.
One can consider 2-point gradient estimatora G:

G = d
L(w + εv) − L(w − εv)

2ε
v,

where v is spherically symmetric.
aI suggest a nice presentation about gradient-free methods

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
GD
2-P Estimator GD
Start Point
Optimal Point

Figure 3: “Illustration of two-point estimator of Gradient
Descent”

Automatic differentiation v § } 19

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

L(w) → min
w∈Rd

with the Gradient Descent (GD) algorithm:

wk+1 = wk − αk∇wL(wk)

Is it possible to replace ∇wL(wk) using only zero-order
information?
Yes, but at a cost.
One can consider 2-point gradient estimatora G:

G = d
L(w + εv) − L(w − εv)

2ε
v,

where v is spherically symmetric.
aI suggest a nice presentation about gradient-free methods

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
GD
2-P Estimator GD
Start Point
Optimal Point

Figure 3: “Illustration of two-point estimator of Gradient
Descent”

Automatic differentiation v § } 19

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Gradient Descent without gradient

wk+1 = wk − αkG

One can also consider the idea of finite differences:

G =
d∑

i=1

L(w + εei) − L(w − εei)
2ε

ei

Open In Colab ♣

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent
Finite Differences Gradient Descent
Start Point
Optimal Point

Figure 4: “Illustration of finite differences estimator of Gradient
Descent”

Automatic differentiation v § } 20

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Zero_order_GD.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Gradient Descent without gradient

wk+1 = wk − αkG

One can also consider the idea of finite differences:

G =
d∑

i=1

L(w + εei) − L(w − εei)
2ε

ei

Open In Colab ♣

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent
Finite Differences Gradient Descent
Start Point
Optimal Point

Figure 4: “Illustration of finite differences estimator of Gradient
Descent”

Automatic differentiation v § } 20

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Zero_order_GD.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

The curse of dimensionality for zero-order methods

min
x∈Rn

f(x)

GD: xk+1 = xk − αk∇f(xk) Zero order GD: xk+1 = xk − αkG,

where G is a 2-point or multi-point estimator of the gradient.

f(x) - smooth f(x) - smooth and convex f(x) - smooth and strongly convex

GD ∥∇f(xk)∥2 ≈ O
(1

k

)
f(xk) − f∗ ≈ O

(1
k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

L

)k
)

Zero order
GD

∥∇f(xk)∥2 ≈ O
(

n

k

)
f(xk) − f∗ ≈ O

(
n

k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

nL

)k
)

Automatic differentiation v § } 21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

The curse of dimensionality for zero-order methods

min
x∈Rn

f(x)

GD: xk+1 = xk − αk∇f(xk) Zero order GD: xk+1 = xk − αkG,

where G is a 2-point or multi-point estimator of the gradient.

f(x) - smooth f(x) - smooth and convex f(x) - smooth and strongly convex

GD ∥∇f(xk)∥2 ≈ O
(1

k

)
f(xk) − f∗ ≈ O

(1
k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

L

)k
)

Zero order
GD

∥∇f(xk)∥2 ≈ O
(

n

k

)
f(xk) − f∗ ≈ O

(
n

k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

nL

)k
)

Automatic differentiation v § } 21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

The curse of dimensionality for zero-order methods

min
x∈Rn

f(x)

GD: xk+1 = xk − αk∇f(xk) Zero order GD: xk+1 = xk − αkG,

where G is a 2-point or multi-point estimator of the gradient.

f(x) - smooth f(x) - smooth and convex f(x) - smooth and strongly convex

GD ∥∇f(xk)∥2 ≈ O
(1

k

)
f(xk) − f∗ ≈ O

(1
k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

L

)k
)

Zero order
GD

∥∇f(xk)∥2 ≈ O
(

n

k

)
f(xk) − f∗ ≈ O

(
n

k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

nL

)k
)

Automatic differentiation v § } 21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite differences

The naive approach to get approximate values of gradients is Finite differences approach. For each coordinate, one
can calculate the partial derivative approximation:

∂L

∂wk
(w) ≈ L(w + εek) − L(w)

ε
, ek = (0, . . . , 1

k
, . . . , 0)

ñ Question

If the time needed for one calculation of L(w) is T , what is the time needed for calculating ∇wL with this
approach?
Answer 2dT , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.
Theorem
There is an algorithm to compute ∇wL in O(T) operations. 1

1Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic differentiation v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite differences

The naive approach to get approximate values of gradients is Finite differences approach. For each coordinate, one
can calculate the partial derivative approximation:

∂L

∂wk
(w) ≈ L(w + εek) − L(w)

ε
, ek = (0, . . . , 1

k
, . . . , 0)

ñ Question

If the time needed for one calculation of L(w) is T , what is the time needed for calculating ∇wL with this
approach?

Answer 2dT , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.
Theorem
There is an algorithm to compute ∇wL in O(T) operations. 1

1Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic differentiation v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite differences

The naive approach to get approximate values of gradients is Finite differences approach. For each coordinate, one
can calculate the partial derivative approximation:

∂L

∂wk
(w) ≈ L(w + εek) − L(w)

ε
, ek = (0, . . . , 1

k
, . . . , 0)

ñ Question

If the time needed for one calculation of L(w) is T , what is the time needed for calculating ∇wL with this
approach?
Answer 2dT , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.

Theorem
There is an algorithm to compute ∇wL in O(T) operations. 1

1Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic differentiation v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Finite differences

The naive approach to get approximate values of gradients is Finite differences approach. For each coordinate, one
can calculate the partial derivative approximation:

∂L

∂wk
(w) ≈ L(w + εek) − L(w)

ε
, ek = (0, . . . , 1

k
, . . . , 0)

ñ Question

If the time needed for one calculation of L(w) is T , what is the time needed for calculating ∇wL with this
approach?
Answer 2dT , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.
Theorem
There is an algorithm to compute ∇wL in O(T) operations. 1

1Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic differentiation v § } 22

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation
To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

L(w1, w2) = w2 log w1 +
√

w2 log w1

Let’s draw a computational graph of this function:

Figure 5: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Let’s go from the beginning of the graph to the end and calculate the derivative ∂L

∂w1
.

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation
To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

L(w1, w2) = w2 log w1 +
√

w2 log w1

Let’s draw a computational graph of this function:

Figure 5: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Let’s go from the beginning of the graph to the end and calculate the derivative ∂L

∂w1
.

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation
To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

L(w1, w2) = w2 log w1 +
√

w2 log w1

Let’s draw a computational graph of this function:

Figure 5: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Let’s go from the beginning of the graph to the end and calculate the derivative ∂L

∂w1
.

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 6: Illustration of forward mode automatic differentiation

Function
w1 = w1, w2 = w2

Derivative
∂w1

∂w1
= 1,

∂w2

∂w1
= 0

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 6: Illustration of forward mode automatic differentiation

Function
w1 = w1, w2 = w2

Derivative
∂w1

∂w1
= 1,

∂w2

∂w1
= 0

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 7: Illustration of forward mode automatic differentiation

Function
v1 = log w1

Derivative
∂v1
∂w1

= ∂v1
∂w1

∂w1
∂w1

= 1
w1

1

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 7: Illustration of forward mode automatic differentiation

Function
v1 = log w1

Derivative
∂v1
∂w1

= ∂v1
∂w1

∂w1
∂w1

= 1
w1

1

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 7: Illustration of forward mode automatic differentiation

Function
v1 = log w1

Derivative
∂v1
∂w1

= ∂v1
∂w1

∂w1
∂w1

= 1
w1

1

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 8: Illustration of forward mode automatic differentiation

Function
v2 = w2v1

Derivative
∂v2
∂w1

= ∂v2
∂v1

∂v1
∂w1

+ ∂v2
∂w2

∂w2
∂w1

= w2
∂v1
∂w1

+ v1
∂w2
∂w1

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 8: Illustration of forward mode automatic differentiation

Function
v2 = w2v1

Derivative
∂v2
∂w1

= ∂v2
∂v1

∂v1
∂w1

+ ∂v2
∂w2

∂w2
∂w1

= w2
∂v1
∂w1

+ v1
∂w2
∂w1

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 8: Illustration of forward mode automatic differentiation

Function
v2 = w2v1

Derivative
∂v2
∂w1

= ∂v2
∂v1

∂v1
∂w1

+ ∂v2
∂w2

∂w2
∂w1

= w2
∂v1
∂w1

+ v1
∂w2
∂w1

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 9: Illustration of forward mode automatic differentiation

Function
v3 = √

v2

Derivative
∂v3
∂w1

= ∂v3
∂v2

∂v2
∂w1

= 1
2√

v2
∂v2
∂w1

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 9: Illustration of forward mode automatic differentiation

Function
v3 = √

v2

Derivative
∂v3
∂w1

= ∂v3
∂v2

∂v2
∂w1

= 1
2√

v2
∂v2
∂w1

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 9: Illustration of forward mode automatic differentiation

Function
v3 = √

v2

Derivative
∂v3
∂w1

= ∂v3
∂v2

∂v2
∂w1

= 1
2√

v2
∂v2
∂w1

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 10: Illustration of forward mode automatic differentiation

Function
L = v2 + v3

Derivative
∂L

∂w1
= ∂L

∂v2
∂v2
∂w1

+ ∂L
∂v3

∂v3
∂w1

= 1 ∂v2
∂w1

+ 1 ∂v3
∂w1

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 10: Illustration of forward mode automatic differentiation

Function
L = v2 + v3

Derivative
∂L

∂w1
= ∂L

∂v2
∂v2
∂w1

+ ∂L
∂v3

∂v3
∂w1

= 1 ∂v2
∂w1

+ 1 ∂v3
∂w1

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 10: Illustration of forward mode automatic differentiation

Function
L = v2 + v3

Derivative
∂L

∂w1
= ∂L

∂v2
∂v2
∂w1

+ ∂L
∂v3

∂v3
∂w1

= 1 ∂v2
∂w1

+ 1 ∂v3
∂w1

Automatic differentiation v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Make the similar computations for ∂L

∂w2

Figure 11: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Automatic differentiation v § } 24

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation example

Figure 12: Illustration of forward mode automatic differentiation

Function
w1 = w1, w2 = w2

Derivative
∂w1

∂w2
= 0,

∂w2

∂w2
= 1

Automatic differentiation v § } 24

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation example

Figure 13: Illustration of forward mode automatic differentiation

Function
v1 = log w1

Derivative
∂v1
∂w2

= ∂v1
∂w2

∂w2
∂w2

= 0 · 1

Automatic differentiation v § } 24

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation example

Figure 14: Illustration of forward mode automatic differentiation

Function
v2 = w2v1

Derivative
∂v2
∂w2

= ∂v2
∂v1

∂v1
∂w2

+ ∂v2
∂w2

∂w2
∂w2

= w2
∂v1
∂w2

+ v1
∂w2
∂w2

Automatic differentiation v § } 24

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation example

Figure 15: Illustration of forward mode automatic differentiation

Function
v3 = √

v2

Derivative
∂v3
∂w2

= ∂v3
∂v2

∂v2
∂w2

= 1
2√

v2
∂v2
∂w2

Automatic differentiation v § } 24

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation example

Figure 16: Illustration of forward mode automatic differentiation

Function
L = v2 + v3

Derivative
∂L

∂w2
= ∂L

∂v2
∂v2
∂w2

+ ∂L
∂v3

∂v3
∂w2

= 1 ∂v2
∂w2

+ 1 ∂v3
∂w2

Automatic differentiation v § } 24

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :

• Compute vi as a function of its parents (inputs)
x1, . . . , xti :

vi = vi(x1, . . . , xti)
• Compute the derivative vi using the forward chain

rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T) operations.

This means, that for the whole gradient, we need dO(T)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :

• Compute vi as a function of its parents (inputs)
x1, . . . , xti :

vi = vi(x1, . . . , xti)
• Compute the derivative vi using the forward chain

rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T) operations.

This means, that for the whole gradient, we need dO(T)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :

• Compute vi as a function of its parents (inputs)
x1, . . . , xti :

vi = vi(x1, . . . , xti)
• Compute the derivative vi using the forward chain

rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T) operations.

This means, that for the whole gradient, we need dO(T)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :
• Compute vi as a function of its parents (inputs)

x1, . . . , xti :

vi = vi(x1, . . . , xti)

• Compute the derivative vi using the forward chain
rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T) operations.

This means, that for the whole gradient, we need dO(T)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :
• Compute vi as a function of its parents (inputs)

x1, . . . , xti :

vi = vi(x1, . . . , xti)
• Compute the derivative vi using the forward chain

rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T) operations.

This means, that for the whole gradient, we need dO(T)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :
• Compute vi as a function of its parents (inputs)

x1, . . . , xti :

vi = vi(x1, . . . , xti)
• Compute the derivative vi using the forward chain

rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T) operations.

This means, that for the whole gradient, we need dO(T)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 17: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :
• Compute vi as a function of its parents (inputs)

x1, . . . , xti :

vi = vi(x1, . . . , xti)
• Compute the derivative vi using the forward chain

rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T) operations.

This means, that for the whole gradient, we need dO(T)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation
We will consider the same function with a computational graph:

Figure 18: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Assume, that we have some values of the parameters w1, w2 and we have already performed a forward pass
(i.e. single propagation through the computational graph from left to right). Suppose, also, that we somehow saved
all intermediate values of vi. Let’s go from the end of the graph to the beginning and calculate the derivatives
∂L

∂w1
,

∂L

∂w2
:

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation
We will consider the same function with a computational graph:

Figure 18: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Assume, that we have some values of the parameters w1, w2 and we have already performed a forward pass
(i.e. single propagation through the computational graph from left to right). Suppose, also, that we somehow saved
all intermediate values of vi. Let’s go from the end of the graph to the beginning and calculate the derivatives
∂L

∂w1
,

∂L

∂w2
:

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 19: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂L
= 1

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 19: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂L
= 1

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 19: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂L
= 1

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 20: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v3
= ∂L

∂L

∂L

∂v3

= ∂L

∂L
1

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 20: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v3
= ∂L

∂L

∂L

∂v3

= ∂L

∂L
1

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 20: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v3
= ∂L

∂L

∂L

∂v3

= ∂L

∂L
1

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 21: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v2
= ∂L

∂v3

∂v3

∂v2
+ ∂L

∂L

∂L

∂v2

= ∂L

∂v3

1
2√

v2
+ ∂L

∂L
1

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 21: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v2
= ∂L

∂v3

∂v3

∂v2
+ ∂L

∂L

∂L

∂v2

= ∂L

∂v3

1
2√

v2
+ ∂L

∂L
1

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 21: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v2
= ∂L

∂v3

∂v3

∂v2
+ ∂L

∂L

∂L

∂v2

= ∂L

∂v3

1
2√

v2
+ ∂L

∂L
1

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 22: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v1
= ∂L

∂v2

∂v2

∂v1

= ∂L

∂v2
w2

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 22: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v1
= ∂L

∂v2

∂v2

∂v1

= ∂L

∂v2
w2

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 22: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v1
= ∂L

∂v2

∂v2

∂v1

= ∂L

∂v2
w2

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 23: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂w1
= ∂L

∂v1

∂v1

∂w1
= ∂L

∂v1

1
w1

∂L

∂w2
= ∂L

∂v2

∂v2

∂w2
= ∂L

∂v1
v1

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 23: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂w1
= ∂L

∂v1

∂v1

∂w1
= ∂L

∂v1

1
w1

∂L

∂w2
= ∂L

∂v2

∂v2

∂w2
= ∂L

∂v1
v1

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 23: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂w1
= ∂L

∂v1

∂v1

∂w1
= ∂L

∂v1

1
w1

∂L

∂w2
= ∂L

∂v2

∂v2

∂w2
= ∂L

∂v1
v1

Automatic differentiation v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward (reverse) mode automatic differentiation

ñ Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient
∇wL. Is it a free lunch? What is the cost of acceleration?

Answer Note, that for using the reverse mode AD you need to store all intermediate computations from the
forward pass. This problem could be somehow mitigated with the gradient checkpointing approach, which
involves necessary recomputations of some intermediate values. This could significantly reduce the memory
footprint of the large machine-learning model.

Automatic differentiation v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Backward (reverse) mode automatic differentiation

ñ Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient
∇wL. Is it a free lunch? What is the cost of acceleration?
Answer Note, that for using the reverse mode AD you need to store all intermediate computations from the
forward pass. This problem could be somehow mitigated with the gradient checkpointing approach, which
involves necessary recomputations of some intermediate values. This could significantly reduce the memory
footprint of the large machine-learning model.

Automatic differentiation v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Reverse mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N].
Our goal is to calculate the derivative of the output of
this graph with respect to all inputs variable w,

i.e. ∇wvN =
(

∂vN
∂w1

, . . . , ∂vN
∂wd

)T

. This idea implies
propagation of the gradient of the function with respect
to the intermediate variables from the end to the origin,
that is why we can introduce the notation:

vi = ∂L

∂vi
= ∂vN

∂vi

Figure 24: Illustration of reverse chain rule to calculate the
derivative of the function L with respect to the node vi.

• FORWARD PASS
For i = 1, . . . , N :

• Compute and store the values of vi as a function of
its parents (inputs)

• BACKWARD PASS
For i = N, . . . , 1:

• Compute the derivative vi using the backward chain
rule and information from all of its children
(outputs) (x1, . . . , xti):

vi =
∂L

∂vi
=

ti∑
j=1

∂L

∂xj

∂xj

∂vi

Automatic differentiation v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Reverse mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N].
Our goal is to calculate the derivative of the output of
this graph with respect to all inputs variable w,

i.e. ∇wvN =
(

∂vN
∂w1

, . . . , ∂vN
∂wd

)T

. This idea implies
propagation of the gradient of the function with respect
to the intermediate variables from the end to the origin,
that is why we can introduce the notation:

vi = ∂L

∂vi
= ∂vN

∂vi

Figure 24: Illustration of reverse chain rule to calculate the
derivative of the function L with respect to the node vi.

• FORWARD PASS
For i = 1, . . . , N :

• Compute and store the values of vi as a function of
its parents (inputs)

• BACKWARD PASS
For i = N, . . . , 1:

• Compute the derivative vi using the backward chain
rule and information from all of its children
(outputs) (x1, . . . , xti):

vi =
∂L

∂vi
=

ti∑
j=1

∂L

∂xj

∂xj

∂vi

Automatic differentiation v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Reverse mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N].
Our goal is to calculate the derivative of the output of
this graph with respect to all inputs variable w,

i.e. ∇wvN =
(

∂vN
∂w1

, . . . , ∂vN
∂wd

)T

. This idea implies
propagation of the gradient of the function with respect
to the intermediate variables from the end to the origin,
that is why we can introduce the notation:

vi = ∂L

∂vi
= ∂vN

∂vi

Figure 24: Illustration of reverse chain rule to calculate the
derivative of the function L with respect to the node vi.

• FORWARD PASS
For i = 1, . . . , N :

• Compute and store the values of vi as a function of
its parents (inputs)

• BACKWARD PASS
For i = N, . . . , 1:

• Compute the derivative vi using the backward chain
rule and information from all of its children
(outputs) (x1, . . . , xti):

vi =
∂L

∂vi
=

ti∑
j=1

∂L

∂xj

∂xj

∂vi

Automatic differentiation v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Reverse mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N].
Our goal is to calculate the derivative of the output of
this graph with respect to all inputs variable w,

i.e. ∇wvN =
(

∂vN
∂w1

, . . . , ∂vN
∂wd

)T

. This idea implies
propagation of the gradient of the function with respect
to the intermediate variables from the end to the origin,
that is why we can introduce the notation:

vi = ∂L

∂vi
= ∂vN

∂vi

Figure 24: Illustration of reverse chain rule to calculate the
derivative of the function L with respect to the node vi.

• FORWARD PASS
For i = 1, . . . , N :

• Compute and store the values of vi as a function of
its parents (inputs)

• BACKWARD PASS
For i = N, . . . , 1:

• Compute the derivative vi using the backward chain
rule and information from all of its children
(outputs) (x1, . . . , xti):

vi =
∂L

∂vi
=

ti∑
j=1

∂L

∂xj

∂xj

∂vi

Automatic differentiation v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Choose your fighter

Figure 25: Which mode would you choose for
calculating gradients there?

ñ Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic
operations? Suppose, you are needed to compute the jacobian

J =
{

∂Li

∂wj

}
i,j

Answer Note, that the reverse mode computational time is
proportional to the number of outputs here, while the forward mode
works proportionally to the number of inputs there. This is why it
would be a good idea to consider the forward mode AD.

Automatic differentiation v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Choose your fighter

Figure 25: Which mode would you choose for
calculating gradients there?

ñ Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic
operations? Suppose, you are needed to compute the jacobian

J =
{

∂Li

∂wj

}
i,j

Answer Note, that the reverse mode computational time is
proportional to the number of outputs here, while the forward mode
works proportionally to the number of inputs there. This is why it
would be a good idea to consider the forward mode AD.

Automatic differentiation v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Choose your fighter

Figure 26: ♣ This graph nicely illustrates the idea of choice between the modes. The n = 100 dimension is fixed and the
graph presents the time needed for Jacobian calculation w.r.t. x for f(x) = Ax

Automatic differentiation v § } 31

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Choose your fighter

Figure 27: Which mode would you choose for
calculating gradients there?

ñ Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic
operations? Suppose, you are needed to compute the jacobian

J =
{

∂Li

∂wj

}
i,j

. Note, that G is an arbitrary computational

graph

Answer It is generally impossible to say it without some knowledge
about the specific structure of the graph G. Note, that there are also
plenty of advanced approaches to mix forward and reverse mode AD,
based on the specific G structure.

Automatic differentiation v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Choose your fighter

Figure 27: Which mode would you choose for
calculating gradients there?

ñ Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic
operations? Suppose, you are needed to compute the jacobian

J =
{

∂Li

∂wj

}
i,j

. Note, that G is an arbitrary computational

graph

Answer It is generally impossible to say it without some knowledge
about the specific structure of the graph G. Note, that there are also
plenty of advanced approaches to mix forward and reverse mode AD,
based on the specific G structure.

Automatic differentiation v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:

• vk = σ(vk−1wk). Note, that practically
speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.

BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:

• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 28: Feedforward neural network architecture

Automatic differentiation v § } 33

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:

• vk = σ(vk−1wk). Note, that practically
speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.

BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:

• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 28: Feedforward neural network architecture

Automatic differentiation v § } 33

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:
• vk = σ(vk−1wk). Note, that practically

speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.

BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:

• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 28: Feedforward neural network architecture

Automatic differentiation v § } 33

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:
• vk = σ(vk−1wk). Note, that practically

speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:

• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 28: Feedforward neural network architecture

Automatic differentiation v § } 33

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:
• vk = σ(vk−1wk). Note, that practically

speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:

• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 28: Feedforward neural network architecture

Automatic differentiation v § } 33

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:
• vk = σ(vk−1wk). Note, that practically

speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:

• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 28: Feedforward neural network architecture

Automatic differentiation v § } 33

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:
• vk = σ(vk−1wk). Note, that practically

speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:
• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 28: Feedforward neural network architecture

Automatic differentiation v § } 33

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:
• vk = σ(vk−1wk). Note, that practically

speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:
• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 28: Feedforward neural network architecture

Automatic differentiation v § } 33

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 29: x could be found as a solution of linear
system

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write
down an analytical solution x = A−1b, in this example we will show,
that computing all derivatives ∂L

∂A
,

∂L

∂b
,

∂L

∂x
, i.e. the backward pass,

costs approximately the same as the forward pass.

It is known, that the differential of the function does not depend on
the parametrization:

dL =
〈

∂L

∂x
, dx

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Given the linear system, we have:

Ax = b

dAx + Adx = db → dx = A−1(db − dAx)

Automatic differentiation v § } 34

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 29: x could be found as a solution of linear
system

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write
down an analytical solution x = A−1b, in this example we will show,
that computing all derivatives ∂L

∂A
,

∂L

∂b
,

∂L

∂x
, i.e. the backward pass,

costs approximately the same as the forward pass.
It is known, that the differential of the function does not depend on
the parametrization:

dL =
〈

∂L

∂x
, dx

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉

Given the linear system, we have:

Ax = b

dAx + Adx = db → dx = A−1(db − dAx)

Automatic differentiation v § } 34

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 29: x could be found as a solution of linear
system

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write
down an analytical solution x = A−1b, in this example we will show,
that computing all derivatives ∂L

∂A
,

∂L

∂b
,

∂L

∂x
, i.e. the backward pass,

costs approximately the same as the forward pass.
It is known, that the differential of the function does not depend on
the parametrization:

dL =
〈

∂L

∂x
, dx

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Given the linear system, we have:

Ax = b

dAx + Adx = db → dx = A−1(db − dAx)

Automatic differentiation v § } 34

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 30: x could be found as a solution of linear
system

The straightforward substitution gives us:〈
∂L

∂x
, A−1(db − dAx)

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉

〈
−A−T ∂L

∂x
xT , dA

〉
+

〈
A−T ∂L

∂x
, db

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Therefore:

∂L

∂A
= −A−T ∂L

∂x
xT ∂L

∂b
= A−T ∂L

∂x

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic differentiation v § } 35

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 30: x could be found as a solution of linear
system

The straightforward substitution gives us:〈
∂L

∂x
, A−1(db − dAx)

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
〈

−A−T ∂L

∂x
xT , dA

〉
+

〈
A−T ∂L

∂x
, db

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉

Therefore:

∂L

∂A
= −A−T ∂L

∂x
xT ∂L

∂b
= A−T ∂L

∂x

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic differentiation v § } 35

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 30: x could be found as a solution of linear
system

The straightforward substitution gives us:〈
∂L

∂x
, A−1(db − dAx)

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
〈

−A−T ∂L

∂x
xT , dA

〉
+

〈
A−T ∂L

∂x
, db

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Therefore:

∂L

∂A
= −A−T ∂L

∂x
xT ∂L

∂b
= A−T ∂L

∂x

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic differentiation v § } 35

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 30: x could be found as a solution of linear
system

The straightforward substitution gives us:〈
∂L

∂x
, A−1(db − dAx)

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
〈

−A−T ∂L

∂x
xT , dA

〉
+

〈
A−T ∂L

∂x
, db

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Therefore:

∂L

∂A
= −A−T ∂L

∂x
xT ∂L

∂b
= A−T ∂L

∂x

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic differentiation v § } 35

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient propagation through the SVD

Suppose, we have the rectangular matrix W ∈ Rm×n, which has a singular value
decomposition:

W = UΣV T , UT U = I, V T V = I, Σ = diag(σ1, . . . , σmin(m,n))

1. Similarly to the previous example:

W = UΣV T

dW = dUΣV T + UdΣV T + UΣdV T

UT dW V = UT dUΣV T V + UT UdΣV T V + UT UΣdV T V

UT dW V = UT dUΣ + dΣ + ΣdV T V

Automatic differentiation v § } 36

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient propagation through the SVD

2. Note, that UT U = I → dUT U + UT dU = 0. But also dUT U = (UT dU)T ,
which actually involves, that the matrix UT dU is antisymmetric:

(UT dU)T + UT dU = 0 → diag(UT dU) = (0, . . . , 0)

The same logic could be applied to the matrix V and

diag(dV T V) = (0, . . . , 0)

3. At the same time, the matrix dΣ is diagonal, which means (look at the 1.)
that

diag(UT dW V) = dΣ

Here on both sides, we have diagonal matrices.

Automatic differentiation v § } 37

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient propagation through the SVD

2. Note, that UT U = I → dUT U + UT dU = 0. But also dUT U = (UT dU)T ,
which actually involves, that the matrix UT dU is antisymmetric:

(UT dU)T + UT dU = 0 → diag(UT dU) = (0, . . . , 0)

The same logic could be applied to the matrix V and

diag(dV T V) = (0, . . . , 0)

3. At the same time, the matrix dΣ is diagonal, which means (look at the 1.)
that

diag(UT dW V) = dΣ

Here on both sides, we have diagonal matrices.

Automatic differentiation v § } 37

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient propagation through the SVD

4. Now, we can decompose the differential of the loss function as a function of
Σ - such problems arise in ML problems, where we need to restrict the
matrix rank:

dL =
〈

∂L

∂Σ , dΣ
〉

=
〈

∂L

∂Σ , diag(UT dW V)
〉

= tr
(

∂L

∂Σ

T

diag(UT dW V)
)

Automatic differentiation v § } 38

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient propagation through the SVD

5. As soon as we have diagonal matrices inside the product, the trace of the
diagonal part of the matrix will be equal to the trace of the whole matrix:

dL = tr
(

∂L

∂Σ

T

diag(UT dW V)
)

= tr
(

∂L

∂Σ

T

UT dW V

)
=

〈
∂L

∂Σ , UT dW V
〉

=
〈

U
∂L

∂ΣV T , dW
〉

Automatic differentiation v § } 39

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient propagation through the SVD

6. Finally, using another parametrization of the differential〈
U

∂L

∂ΣV T , dW
〉

=
〈

∂L

∂W
, dW

〉
∂L

∂W
= U

∂L

∂ΣV T ,

This nice result allows us to connect the gradients ∂L

∂W
and ∂L

∂Σ .

Automatic differentiation v § } 40

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Hessian vector product without the Hessian

When you need some information about the curvature of the function you usually need to work with the hessian.
However, when the dimension of the problem is large it is challenging. For a scalar-valued function f : Rn → R, the
Hessian at a point x ∈ Rn is written as ∇2f(x). A Hessian-vector product function is then able to evaluate

v 7→ ∇2f(x) · v

for any vector v ∈ Rn. We have to use the identity

∇2f(x)v = ∇[x 7→ ∇f(x) · v] = ∇g(x),

where g(x) = ∇f(x)T · v is a new vector-valued function that dots the gradient of f at x with the vector v.
import jax.numpy as jnp

def hvp(f, x, v):
return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Automatic differentiation v § } 41

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Hutchinson Trace Estimation 2

This example illustrates the estimation the Hessian trace of a neural network using Hutchinson’s method, which is an
algorithm to obtain such an estimate from matrix-vector products:

Let X ∈ Rd×d and v ∈ Rd be a random vector such that E[vvT] = I. Then,

Tr(X) = E[vT Xv] = 1
V

V∑
i=1

vT
i Xvi.

Figure 31: Source
2A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines - M.F. Hutchinson, 1990

Automatic differentiation v § } 42

https://docs.backpack.pt/en/master/use_cases/example_trace_estimation.html
https://www.tandfonline.com/doi/abs/10.1080/03610919008812866
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Activation checkpointing

The animated visualization of the above approaches §

An example of using a gradient checkpointing §

Automatic differentiation v § } 43

https://github.com/cybertronai/gradient-checkpointing
https://colab.research.google.com/github/oseledets/dl2023/blob/main/seminars/seminar-10/Large_model_training_practice.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

• AD is not a finite differences

• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-efficient and

numerically stable
• AD (reverse mode) is memory inefficient

(you need to store all intermediate
computations from the forward pass).

Figure 32: Different approaches for taking derivatives

Automatic differentiation v § } 44

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative

• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-efficient and

numerically stable
• AD (reverse mode) is memory inefficient

(you need to store all intermediate
computations from the forward pass).

Figure 32: Different approaches for taking derivatives

Automatic differentiation v § } 44

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative
• AD is not just the chain rule

• AD is not just backpropagation
• AD (reverse mode) is time-efficient and

numerically stable
• AD (reverse mode) is memory inefficient

(you need to store all intermediate
computations from the forward pass).

Figure 32: Different approaches for taking derivatives

Automatic differentiation v § } 44

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation

• AD (reverse mode) is time-efficient and
numerically stable

• AD (reverse mode) is memory inefficient
(you need to store all intermediate
computations from the forward pass).

Figure 32: Different approaches for taking derivatives

Automatic differentiation v § } 44

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-efficient and

numerically stable

• AD (reverse mode) is memory inefficient
(you need to store all intermediate
computations from the forward pass).

Figure 32: Different approaches for taking derivatives

Automatic differentiation v § } 44

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-efficient and

numerically stable
• AD (reverse mode) is memory inefficient

(you need to store all intermediate
computations from the forward pass).

Figure 32: Different approaches for taking derivatives

Automatic differentiation v § } 44

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Code

Open In Colab ♣

Automatic differentiation v § } 45

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient checkpointing

Gradient checkpointing v § } 46

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture

Forward pass

Backward pass

Figure 33: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f . The gradient of the loss with respect to the activations and parameters marked with b.

, Important

The results obtained for the f nodes are needed to compute the b nodes.

Gradient checkpointing v § } 47

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Feedforward Architecture

Forward pass

Backward pass

Figure 33: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f . The gradient of the loss with respect to the activations and parameters marked with b.

, Important

The results obtained for the f nodes are needed to compute the b nodes.

Gradient checkpointing v § } 47

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

Figure 34: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Gradient checkpointing v § } 48

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

Figure 34: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Gradient checkpointing v § } 48

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

Figure 34: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Gradient checkpointing v § } 48

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

Figure 34: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Gradient checkpointing v § } 48

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

Figure 34: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Gradient checkpointing v § } 48

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vanilla backpropagation

Figure 34: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Gradient checkpointing v § } 48

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 35: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Gradient checkpointing v § } 49

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 35: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Gradient checkpointing v § } 49

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 35: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Gradient checkpointing v § } 49

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 35: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Gradient checkpointing v § } 49

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 35: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Gradient checkpointing v § } 49

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Memory poor backpropagation

Figure 35: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Gradient checkpointing v § } 49

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 36: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Gradient checkpointing v § } 50

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 36: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Gradient checkpointing v § } 50

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 36: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Gradient checkpointing v § } 50

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 36: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Gradient checkpointing v § } 50

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 36: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Gradient checkpointing v § } 50

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 36: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Gradient checkpointing v § } 50

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Gradient checkpointing visualization

The animated visualization of the above approaches §

An example of using a gradient checkpointing §

Gradient checkpointing v § } 51

https://github.com/cybertronai/gradient-checkpointing
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

	Matrix calculus
	Automatic differentiation
	Gradient checkpointing

