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Eigenvectors and eigenvalues

A scalar value λ is an eigenvalue of the n× n matrix A if there is a nonzero vector q such that

Aq = λq.

he vector q is called an eigenvector of A. The matrix A is nonsingular if none of its eigenvalues are zero. The
eigenvalues of symmetric matrices are all real numbers, while nonsymmetric matrices may have imaginary
eigenvalues. If the matrix is positive definite as well as symmetric, its eigenvalues are all positive real numbers.
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Eigenvectors and eigenvalues
ñ Theorem

A ⪰ (≻)0⇔ all eigenvalues of A are ≥ (>)0

ñ Proof

1. → Suppose some eigenvalue λ is negative and let x denote its corresponding eigenvector. Then

Ax = λx→ xT Ax = λxT x < 0

which contradicts the condition of A ⪰ 0.

2. ← For any symmetric matrix, we can pick a set of eigenvectors v1, . . . , vn that form an
orthogonal basis of Rn. Pick any x ∈ Rn.

xT Ax = (α1v1 + . . . + αnvn)T A(α1v1 + . . . + αnvn)

=
∑

α2
i vT

i Avi =
∑

α2
i λiv

T
i vi ≥ 0

here we have used the fact that vT
i vj = 0, for i ̸= j.
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Eigendecomposition (spectral decomposition)

Suppose A ∈ Sn, i.e., A is a real symmetric n× n matrix. Then A can be factorized as

A = QΛQT ,

where Q ∈ Rn×n is orthogonal, i.e., satisfies QT Q = I, and Λ = diag(λ1, . . . , λn). The (real) numbers λi are the
eigenvalues of A and are the roots of the characteristic polynomial det(A− λI). The columns of Q form an
orthonormal set of eigenvectors of A. The factorization is called the spectral decomposition or (symmetric)
eigenvalue decomposition of A. 1

We usually order the eigenvalues as λ1 ≥ λ2 ≥ . . . ≥ λn. We use the notation λi(A) to refer to the i-th largest
eigenvalue of A ∈ S. We usually write the largest or maximum eigenvalue as λ1(A) = λmax(A), and the least or
minimum eigenvalue as λn(A) = λmin(A).

1A good cheat sheet with matrix decomposition is available at the NLA course website.
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Eigenvalues
The largest and smallest eigenvalues satisfy

λmin(A) = inf
x ̸=0

xT Ax

xT x
, λmax(A) = sup

x ̸=0

xT Ax

xT x

and consequently ∀x ∈ Rn (Rayleigh quotient):

λmin(A)xT x ≤ xT Ax ≤ λmax(A)xT x

The condition number of a nonsingular matrix is defined as

κ(A) = ∥A∥∥A−1∥

If we use spectral matrix norm, we can get:

κ(A) = σmax(A)
σmin(A)

If, moreover, A ∈ Sn
++: κ(A) = λmax(A)

λmin(A)
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Singular value decomposition
Suppose A ∈ Rm×n with rank A = r. Then A can be factored as

A = UΣV T

where U ∈ Rm×r satisfies UT U = I, V ∈ Rn×r satisfies V T V = I, and Σ is a diagonal matrix with
Σ = diag(σ1, ..., σr), such that

σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

This factorization is called the singular value decomposition (SVD) of A. The columns of U are called left singular
vectors of A, the columns of V are right singular vectors, and the numbers σi are the singular values. The singular
value decomposition can be written as

A =
r∑

i=1

σiuiv
T
i ,

where ui ∈ Rm are the left singular vectors, and vi ∈ Rn are the right singular vectors.
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Singular value decomposition

ñ Question

Suppose, matrix A ∈ Sn
++. What can we say about the connection between its eigenvalues and singular

values?

ñ Question

How do the singular values of a matrix relate to its eigenvalues, especially for a symmetric matrix?
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Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A = UV T A = ĈÂ−1R̂

The latter expression refers to the fun fact: you can randomly choose r linearly
independent columns of a matrix and any r linearly independent rows of a matrix
and store only them with the ability to reconstruct the whole matrix exactly.
Use cases for Skeleton decomposition are:

• Model reduction, data compression, and speedup of computations in
numerical analysis: given rank-r matrix with r ≪ n, m one needs to store
O((n + m)r)≪ nm elements.

• Feature extraction in machine learning, where it is also known as matrix
factorization

• All applications where SVD applies, since Skeleton decomposition can be
transformed into truncated SVD form.

Figure 1: Illustration of Skeleton
decomposition
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The latter expression refers to the fun fact: you can randomly choose r linearly
independent columns of a matrix and any r linearly independent rows of a matrix
and store only them with the ability to reconstruct the whole matrix exactly.
Use cases for Skeleton decomposition are:
• Model reduction, data compression, and speedup of computations in

numerical analysis: given rank-r matrix with r ≪ n, m one needs to store
O((n + m)r)≪ nm elements.

• Feature extraction in machine learning, where it is also known as matrix
factorization

• All applications where SVD applies, since Skeleton decomposition can be
transformed into truncated SVD form.

Figure 1: Illustration of Skeleton
decomposition

SVD v § } 10

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A = UV T A = ĈÂ−1R̂
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Canonical tensor decomposition
One can consider the generalization of Skeleton decomposition to the higher order data structure, like tensors, which
implies representing the tensor as a sum of r primitive tensors.

Tensor 𝑻𝐼× 𝐽×𝐾

𝑎1

𝑏1
𝑐1

𝑎𝑟

𝑏𝑟
𝑐𝑟

𝐴𝐼× 𝑟 𝐵𝐽× 𝑟 𝐶𝐾× 𝑟

Figure 2: Illustration of Canonical Polyadic decomposition

ñ Example

Note, that there are many tensor decompositions: Canonical, Tucker, Tensor Train (TT), Tensor Ring
(TR), and others. In the tensor case, we do not have a straightforward definition of rank for all types of
decompositions. For example, for TT decomposition rank is not a scalar, but a vector.
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Determinant and trace
The determinant and trace can be expressed in terms of the eigenvalues

detA =
n∏

i=1

λi, trA =
n∑

i=1

λi

The determinant has several appealing (and revealing) properties. For instance,
• detA = 0 if and only if A is singular;

• detAB = (detA)(detB);
• detA−1 = 1

det A
.

Don’t forget about the cyclic property of a trace for arbitrary matrices A, B, C, D (assuming, that all dimensions are
consistent):

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

ñ Question

How does the determinant of a matrix relate to its invertibility?
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First-order Taylor approximation

The first-order Taylor approximation, also known as the linear approximation, is
centered around some point x0. If f : Rn → R is a differentiable function, then
its first-order Taylor approximation is given by:

fI
x0 (x) = f(x0) +∇f(x0)T (x− x0)

Where:
• f(x0) is the value of the function at the point x0.

• ∇f(x0) is the gradient of the function at the point x0.
It is very usual to replace the f(x) with fI

x0 (x) near the point x0 for simple
analysis of some approaches. Figure 3: First order Taylor

approximation near the point x0
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Second-order Taylor approximation

The second-order Taylor approximation, also known as the quadratic
approximation, includes the curvature of the function. For a twice-differentiable
function f : Rn → R, its second-order Taylor approximation centered at some
point x0 is:

fII
x0 (x) = f(x0) +∇f(x0)T (x− x0) + 1

2(x− x0)T∇2f(x0)(x− x0)

Where ∇2f(x0) is the Hessian matrix of f at the point x0.

When using the linear approximation of the function is not sufficient one can
consider replacing the f(x) with fII

x0 (x) near the point x0. In general, Taylor
approximations give us a way to locally approximate functions. The first-order
approximation is a plane tangent to the function at the point x0, while the
second-order approximation includes the curvature and is represented by a
parabola. These approximations are especially useful in optimization and
numerical methods because they provide a tractable way to work with complex
functions.

Figure 4: Second order Taylor
approximation near the point x0
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Second-order Taylor approximation
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Exercises

• Linear Least Squares

• 3Stupid, but important idea on matrix multiplication
• 3Problems
• How to calculate minimum and maximum eigenvalue of the hessian matrix of linear least squares problem?

What about binary logistic regression?

SVD v § } 15
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