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GPT-2 training Memory footprint

3 GB Parameters (fp16)

3 GB Gradients (fp16)

6 GB Optimizer States (fp32 Parameters)

6 GB Optimizer States (fp32 Momentum)

6 GB Optimizer States (fp32 Variance)

8 GB Activations (with checkpointing)

6 GB Temporary Buffers (fp32)

3 GB Fragmentation Overhead (Variable)

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can’t be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Model States:

• Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.

• Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.

Memory Requirements Example:

• Training with Adam in mixed precision for a model with Ψ parameters: 2Ψ bytes
for fp16 parameters and gradients, 12Ψ bytes for optimizer states (parameters,
momentum, variance).

• Total: 16Ψ bytes; for GPT-2 with 1.5B parameters, this equals 24GB.

Residual Memory Consumption:

• Activations: Significant memory usage, e.g., 1.5B parameter GPT-2 model with
sequence length 1K and batch size 32 requires ~60GB.

• Activation checkpointing can reduce activation memory by about 50%, with a 33%
recomputation overhead.
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• Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a
single buffer.
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Memory Fragmentation:

• Memory fragmentation can cause out-of-memory issues despite available memory,
as contiguous blocks are required.

• In some cases, over 30% of memory remains unusable due to fragmentation.
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Large batch training
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Large batch training 1
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Large batch training 2
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Large batch training 3

Effective batch size (kn) α top-1 error (%)
256 0.05 23.92 ± 0.10
256 0.10 23.60 ± 0.12
256 0.20 23.68 ± 0.09
8k 0.05 · 32 24.27 ± 0.08
8k 0.10 · 32 23.74 ± 0.09
8k 0.20 · 32 24.05 ± 0.18
8k 0.10 41.67 ± 0.10
8k 0.10 ·

√
32 26.22 ± 0.03

Comparison of learning rate scaling rules. ResNet-50 trained on ImageNet. A reference learning rate of α = 0.1
works best for kn = 256 (23.68% error). The linear scaling rule suggests α = 0.1 · 32 when kn = 8k, which again
gives best performance (23.74% error). Other ways of scaling α give worse results.

3Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
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Linear and square root scaling rules

When training with large batches, the learning rate must be adjusted to maintain convergence speed and stability.
The linear scaling rule4 suggests multiplying the learning rate by the same factor as the increase in batch size:

αnew = αbase · Batch Sizenew

Batch Sizebase

The square root scaling rule5 proposes scaling the learning rate with the square root of the batch size increase:

αnew = αbase ·
√

Batch Sizenew

Batch Sizebase

Authors claimed, that it suits for adaptive optimizers like Adam, RMSProp and etc. while linear scaling rule serves
well for SGD.

4Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
5Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
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Gradual warmup 6

Gradual warmup helps to avoid instability when starting with large learning rates by slowly increasing the learning
rate from a small value to the target value over a few epochs. This is defined as:

αt = αmax · t

Tw

where t is the current iteration and Tw is the warmup duration in iterations. In the original paper, authors used first
5 epochs for gradual warmup.
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Figure 1: no warmup
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Figure 2: constant warmup
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Figure 3: gradual warmup
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Gradient accumulation

Gradient accumulation allows the effective batch size to be increased without requiring larger memory by
accumulating gradients over several mini-batches:

Without gradient accumulation
for i, (inputs, targets) in enumerate(data):

outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()

optimizer.step()
optimizer.zero_grad()

With gradient accumulation
for i, (inputs, targets) in enumerate(data):

outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
if (i+1) % accumulation_steps == 0:

optimizer.step()
optimizer.zero_grad()
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MultiGPU training
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Data Parallel training
1. Parameter server sends the full copy of the model to each device

2. Each device makes forward and backward passes
3. Parameter server gathers gradients
4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

Parameter server

Model  
Optimizer state  
Data  

GPU 1

Forward pass  
Backward pass  

GPU i

Forward pass  
Backward pass  

GPU D

Forward pass  
Backward pass  

Parameter server

Model  
Optimizer state  
Data  

Figure 4: Scheme of Data Parallel training

MultiGPU training v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Data Parallel training
1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes

3. Parameter server gathers gradients
4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

Parameter server

Model  
Optimizer state  
Data  

GPU 1

Forward pass  
Backward pass  

GPU i

Forward pass  
Backward pass  

GPU D

Forward pass  
Backward pass  

Parameter server

Model  
Optimizer state  
Data  

Figure 4: Scheme of Data Parallel training

MultiGPU training v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Data Parallel training
1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes
3. Parameter server gathers gradients

4. Parameter server updates the model
Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

Parameter server

Model  
Optimizer state  
Data  

GPU 1

Forward pass  
Backward pass  

GPU i

Forward pass  
Backward pass  

GPU D

Forward pass  
Backward pass  

Parameter server

Model  
Optimizer state  
Data  

Figure 4: Scheme of Data Parallel training

MultiGPU training v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Data Parallel training
1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes
3. Parameter server gathers gradients
4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

Parameter server

Model  
Optimizer state  
Data  

GPU 1

Forward pass  
Backward pass  

GPU i

Forward pass  
Backward pass  

GPU D

Forward pass  
Backward pass  

Parameter server

Model  
Optimizer state  
Data  

Figure 4: Scheme of Data Parallel training

MultiGPU training v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Data Parallel training
1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes
3. Parameter server gathers gradients
4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

Parameter server

Model  
Optimizer state  
Data  

GPU 1

Forward pass  
Backward pass  

GPU i

Forward pass  
Backward pass  

GPU D

Forward pass  
Backward pass  

Parameter server

Model  
Optimizer state  
Data  

Figure 4: Scheme of Data Parallel training

MultiGPU training v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Data Parallel training
1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes
3. Parameter server gathers gradients
4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

Parameter server

Model  
Optimizer state  
Data  

GPU 1

Forward pass  
Backward pass  

GPU i

Forward pass  
Backward pass  

GPU D

Forward pass  
Backward pass  

Parameter server

Model  
Optimizer state  
Data  

Figure 4: Scheme of Data Parallel training

MultiGPU training v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Distributed Data Parallel training

Distributed Data Parallel (DDP) 7 extends data parallelism across multiple nodes. Each node computes gradients
locally, then synchronizes with others. Below one can find differences from the PyTorch site. This is used by default
in 3Accelerate library.

DataParallel DistributedDataParallel
More overhead; model is replicated and destroyed at

each forward pass
Model is replicated only once

Only supports single-node parallelism Supports scaling to multiple machines
Slower; uses multithreading on a single process and runs

into Global Interpreter Lock (GIL) contention
Faster (no GIL contention) because it uses

multiprocessing

7Getting Started with Distributed Data Parallel
MultiGPU training v § } 13
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Naive model parallelism
Model parallelism divides the model across multiple GPUs. Each GPU handles a subset of the model layers, reducing
memory load per GPU. Allows to work with the models, that won’t fit in the single GPU Poor resource utilization.

Figure 5: Model parallelism
MultiGPU training v § } 14

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Pipeline model parallelism (GPipe) 8

GPipe splits the model into stages, each processed sequentially. Micro-batches are passed through the pipeline,
allowing for overlapping computation and communication:

8GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
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Pipeline model parallelism (PipeDream) 9

PipeDream uses asynchronous pipeline parallelism, balancing forward and backward passes across the pipeline stages
to maximize utilization and reduce idle time:

9PipeDream: Generalized Pipeline Parallelism for DNN Training
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ZeRO 10

10ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
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Automatic Mixed Precision training

Two copies of the models needed to be stored - fp32 and fp16 (fp8). Rewrite the computational graph with respect
to the following idea:

Numerically-Safe plus
Performance Critical
(always in fp16/fp8)
Convolution & Matmul

Numerically-Neutral
(Context-Dependent)
Max, min

Numerically-Safe
(Conditional,
Context-Dependent)
Activations

Numerically-Dangerous
(Always in fp32)
Exp, Log, Pow, Softmax,
Reduction Sum, Mean

In accelerate:
torch.cuda.amp.autocast(dtype=torch.float16)(model_forward_func)

or
torch.autocast(device_type=self.device.type, dtype=torch.bfloat16)(model_forward_func)

MultiGPU training v § } 18

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


LoRA 11

Pretrained 
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LoRA reduces the number of parameters by approximating
weight matrices with low-rank factorization:

Wnew = W + ∆W

where ∆W = ABT , with A and B being low-rank
matrices. This reduces computational and memory
overhead while maintaining model performance.

• A is initialized as usual, while B is initialized with
zeroes in order to start from identity mapping

• r is typically selected between 2 and 64
• Usually applied to attention modules

h = Wnewx = W x + ∆W x = W x + ABT x

11LoRA: Low-Rank Adaptation of Large Language Models
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Feedforward Architecture

Forward pass

Backward pass

Figure 6: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f . The gradient of the loss with respect to the activations and parameters marked with b.

, Important

The results obtained for the f nodes are needed to compute the b nodes.
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Vanilla backpropagation

Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

MultiGPU training v § } 21
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Memory poor backpropagation

Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.
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Checkpointed backpropagation
checkpoint

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.
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Gradient checkpointing visualization

The animated visualization of the above approaches §

An example of using a gradient checkpointing §
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Quantization
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Split the weight matrix into 2 well clustered factors 12

Figure 10: Scheme of post-training quantization approach.

12Quantization of Large Language Models with an Overdetermined Basis
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Newton method
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Idea of Newton method of root finding
Consider the function φ(x) : R → R.

The whole idea came from building a linear
approximation at the point xk and find its
root, which will be the new iteration point:

φ′(xk) = φ(xk)
xk+1 − xk

We get an iterative scheme:

xk+1 = xk − φ(xk)
φ′(xk) .

Which will become a Newton optimization
method in case f ′(x) = φ(x)a:

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk)

aLiterally we aim to solve the problem of finding
stationary points ∇f(x) = 0

Newton method v § } 28
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Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point xk. Let us consider the quadratic approximation of this
function near xk:

fII
xk

(x) = f(xk) + ⟨∇f(xk), x − xk⟩ + 1
2 ⟨∇2f(xk)(x − xk), x − xk⟩.

The idea of the method is to find the point xk+1, that minimizes the function fII
xk

(x), i.e. ∇fII
xk

(xk+1) = 0.

∇fII
xk

(xk+1) = ∇f(xk) + ∇2f(xk)(xk+1 − xk) = 0
∇2f(xk)(xk+1 − xk) = −∇f(xk)[

∇2f(xk)
]−1 ∇2f(xk)(xk+1 − xk) = −

[
∇2f(xk)

]−1 ∇f(xk)

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).
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Newton method as a local quadratic Taylor approximation minimizer

Figure 11: Illustration
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Newton method as a local quadratic Taylor approximation minimizer

Figure 12: Illustration
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Newton method as a local quadratic Taylor approximation minimizer

Figure 14: Illustration
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Newton method as a local quadratic Taylor approximation minimizer

Figure 15: Illustration
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Newton method as a local quadratic Taylor approximation minimizer

Figure 16: Illustration
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Convergence

ñ Theorem

Let f(x) be a strongly convex twice continuously differentiable function at Rn, for the second derivative of
which inequalities are executed: µIn ⪯ ∇2f(x) ⪯ LIn. Then Newton’s method with a constant step locally
converges to solving the problem with superlinear speed. If, in addition, Hessian is M -Lipschitz continuous,
then this method converges locally to x∗ at a quadratic rate.

Thus, we have an important result: Newton’s method for the function with Lipschitz positive-definite Hessian
converges quadratically near (∥x0 − x∗∥ < 2µ

3M
) to the solution.
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Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Affine Invariance of Newton’s Method
An important property of Newton’s method is affine invariance. Given a function f and a nonsingular matrix
A ∈ Rn×n, let x = Ay, and define g(y) = f(Ay). Note, that ∇g(y) = AT ∇f(x) and ∇2g(y) = AT ∇2f(x)A. The
Newton steps on g are expressed as:

yk+1 = yk −
(
∇2g(yk)

)−1 ∇g(yk)

Expanding this, we get:
yk+1 = yk −

(
AT ∇2f(Ayk)A

)−1
AT ∇f(Ayk)

Using the property of matrix inverse (AB)−1 = B−1A−1, this simplifies to:

yk+1 = yk − A−1 (
∇2f(Ayk)

)−1 ∇f(Ayk)

Ayk+1 = Ayk −
(
∇2f(Ayk)

)−1 ∇f(Ayk)

Thus, the update rule for x is:
xk+1 = xk −

(
∇2f(xk)

)−1 ∇f(xk)

This shows that the progress made by Newton’s method is independent of problem scaling. This property is not
shared by the gradient descent method!

Newton method v § } 32

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:

• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction
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Newton method problems

Figure 17: Animation Å
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The idea of adapive metrics
Given f(x) and a point x0. Define
Bε(x0) = {x ∈ Rn : d(x, x0) = ε2} as the set of points
with distance ε to x0. Here we presume the existence of a
distance function d(x, x0).

x∗ = arg min
x∈Bε(x0)

f(x)

Then, we can define another steepest descent direction in
terms of minimizer of function on a sphere:

s = lim
ε→0

x∗ − x0

ε

Let us assume that the distance is defined locally by some
metric A:

d(x, x0) = (x − x0)⊤A(x − x0)

Let us also consider first order Taylor approximation of a
function f(x) near the point x0:

f(x0 + δx) ≈ f(x0) + ∇f(x0)⊤δx (1)

Now we can explicitly pose a problem of finding s, as it
was stated above.

min
δx∈R⋉

f(x0 + δx)

s.t. δx⊤Aδx = ε2

Using equation ( 1 it can be written as:

min
δx∈R⋉

∇f(x0)⊤δx

s.t. δx⊤Aδx = ε2

Using Lagrange multipliers method, we can easily
conclude, that the answer is:

δx = − 2ε2

∇f(x0)⊤A−1∇f(x0)A−1∇f

Which means, that new direction of steepest descent is
nothing else, but A−1∇f(x0).
. . . Indeed, if the space is isotropic and A = I, we
immediately have gradient descent formula, while Newton
method uses local Hessian as a metric matrix.
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Quasi-Newton methods
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Quasi-Newton methods intuition

For the classic task of unconditional optimization f(x) → min
x∈Rn

the general scheme of iteration method is written as:

xk+1 = xk + αkdk

In the Newton method, the dk direction (Newton’s direction) is set by the linear system solution at each step:

Bkdk = −∇f(xk), Bk = ∇2f(xk)

i.e. at each iteration it is necessary to compute hessian and gradient and solve linear system.
Note here that if we take a single matrix of Bk = In as Bk at each step, we will exactly get the gradient descent
method.
The general scheme of quasi-Newton methods is based on the selection of the Bk matrix so that it tends in some
sense at k → ∞ to the truth value of the Hessian ∇2f(xk).
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Quasi-Newton Method Template
Let x0 ∈ Rn, B0 ≻ 0. For k = 1, 2, 3, . . ., repeat:

1. Solve Bkdk = −∇f(xk)

2. Update xk+1 = xk + αkdk

3. Compute Bk+1 from Bk

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (Bk+1)−1

from (Bk)−1.
Basic Idea: As Bk already contains information about the Hessian, use a suitable matrix update to form Bk+1.
Reasonable Requirement for Bk+1 (motivated by the secant method):

∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1dk

∆yk = Bk+1∆xk

In addition to the secant equation, we want:

• Bk+1 to be symmetric
• Bk+1 to be “close” to Bk

• Bk ≻ 0 ⇒ Bk+1 ≻ 0
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Symmetric Rank-One Update

Let’s try an update of the form:
Bk+1 = Bk + auuT

The secant equation Bk+1dk = ∆yk yields:

(auT dk)u = ∆yk − Bkdk

This only holds if u is a multiple of ∆yk − Bkdk. Putting u = ∆yk − Bkdk, we solve the above,

a = 1
(∆yk − Bkdk)T dk

,

which leads to
Bk+1 = Bk + (∆yk − Bkdk)(∆yk − Bkdk)T

(∆yk − Bkdk)T dk

called the symmetric rank-one (SR1) update or Broyden method.

Quasi-Newton methods v § } 40

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Symmetric Rank-One Update

Let’s try an update of the form:
Bk+1 = Bk + auuT

The secant equation Bk+1dk = ∆yk yields:

(auT dk)u = ∆yk − Bkdk

This only holds if u is a multiple of ∆yk − Bkdk. Putting u = ∆yk − Bkdk, we solve the above,

a = 1
(∆yk − Bkdk)T dk

,

which leads to
Bk+1 = Bk + (∆yk − Bkdk)(∆yk − Bkdk)T

(∆yk − Bkdk)T dk

called the symmetric rank-one (SR1) update or Broyden method.

Quasi-Newton methods v § } 40

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Symmetric Rank-One Update

Let’s try an update of the form:
Bk+1 = Bk + auuT

The secant equation Bk+1dk = ∆yk yields:

(auT dk)u = ∆yk − Bkdk

This only holds if u is a multiple of ∆yk − Bkdk. Putting u = ∆yk − Bkdk, we solve the above,

a = 1
(∆yk − Bkdk)T dk

,

which leads to
Bk+1 = Bk + (∆yk − Bkdk)(∆yk − Bkdk)T

(∆yk − Bkdk)T dk

called the symmetric rank-one (SR1) update or Broyden method.

Quasi-Newton methods v § } 40

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Symmetric Rank-One Update

Let’s try an update of the form:
Bk+1 = Bk + auuT

The secant equation Bk+1dk = ∆yk yields:

(auT dk)u = ∆yk − Bkdk

This only holds if u is a multiple of ∆yk − Bkdk. Putting u = ∆yk − Bkdk, we solve the above,

a = 1
(∆yk − Bkdk)T dk

,

which leads to
Bk+1 = Bk + (∆yk − Bkdk)(∆yk − Bkdk)T

(∆yk − Bkdk)T dk

called the symmetric rank-one (SR1) update or Broyden method.

Quasi-Newton methods v § } 40

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz


Symmetric Rank-One Update with inverse

How can we solve
Bk+1dk+1 = −∇f(xk+1),

in order to take the next step? In addition to propagating Bk to Bk+1, let’s propagate inverses, i.e., Ck = B−1
k to

Ck+1 = (Bk+1)−1.

Sherman-Morrison Formula:
The Sherman-Morrison formula states:

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u

Thus, for the SR1 update, the inverse is also easily updated:

Ck+1 = Ck + (dk − Ck∆yk)(dk − Ck∆yk)T

(dk − Ck∆yk)T ∆yk

In general, SR1 is simple and cheap, but it has a key shortcoming: it does not preserve positive definiteness.
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Davidon-Fletcher-Powell Update

We could have pursued the same idea to update the inverse C:

Ck+1 = Ck + auuT + bvvT .

Multiplying by ∆yk, using the secant equation dk = Ck∆yk, and solving for a, b, yields:

Ck+1 = Ck − Ck∆yk∆yT
k Ck

∆yT
k Ck∆yk

+ dkdT
k

∆yT
k dk

Woodbury Formula Application
Woodbury then shows:

Bk+1 =
(

I − ∆ykdT
k

∆yT
k dk

)
Bk

(
I − dk∆yT

k

∆yT
k dk

)
+ ∆yk∆yT

k

∆yT
k dk

This is the Davidon-Fletcher-Powell (DFP) update. Also cheap: O(n2), preserves positive definiteness. Not as
popular as BFGS.
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Broyden-Fletcher-Goldfarb-Shanno update

Let’s now try a rank-two update:
Bk+1 = Bk + auuT + bvvT .

The secant equation ∆yk = Bk+1dk yields:

∆yk − Bkdk = (auT dk)u + (bvT dk)v

Putting u = ∆yk, v = Bkdk, and solving for a, b we get:

Bk+1 = Bk − BkdkdT
k Bk

dT
k Bkdk

+ ∆yk∆yT
k

dT
k ∆yk

called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.
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Broyden-Fletcher-Goldfarb-Shanno update with inverse

Woodbury Formula
The Woodbury formula, a generalization of the Sherman-Morrison formula, is given by:

(A + UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1

Applied to our case, we get a rank-two update on the inverse C:

Ck+1 = Ck + (dk − Ck∆yk)dT
k

∆yT
k dk

+ dk(dk − Ck∆yk)T

∆yT
k dk

− (dk − Ck∆yk)T ∆yk

(∆yT
k dk)2 dkdT

k

Ck+1 =
(

I − dk∆yT
k

∆yT
k dk

)
Ck

(
I − ∆ykdT

k

∆yT
k dk

)
+ dkdT

k

∆yT
k dk

This formulation ensures that the BFGS update, while comprehensive, remains computationally efficient, requiring
O(n2) operations. Importantly, BFGS update preserves positive definiteness. Recall this means
Bk ≻ 0 ⇒ Bk+1 ≻ 0. Equivalently, Ck ≻ 0 ⇒ Ck+1 ≻ 0
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Code

• Open In Colab

• Comparison of quasi Newton methods
• Some practical notes about Newton method
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