Large models training. Bonus: newton and quasinewton methods

Daniil Merkulov

Applied Math for Data Science. Sberuniversity.

 $f \rightarrow min$ [GPT-2 training Memory footprint](#page-1-0) $\mathbf{\Theta} = 3$ $\mathbf{\Theta} = 3$ $\mathbf{\Theta} = 3$

3 GB Parameters (fp16) 3 GB Gradients (fp16) 6 GB Optimizer States (fp32 Parameters) 6 GB Optimizer States (fp32 Momentum) 6 GB Optimizer States (fp32 Variance) **8 GB** Activations (with checkpointing) 6 GB Temporary Buffers (fp32) 3 GB Fragmentation Overhead (Variable) Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage during training includes optimizer states, gradients, parameters, activations, temporary buffers, and fragmented memory. **Model States:** • Optimizer states (e.g., Adam) require memory for time-averaged momentum and gradient variance. • Mixed-precision training (fp16/32) necessitates storing parameters and activations as fp16, but keeps fp32 copies for updates. **Memory Requirements Example:** • Training with Adam in mixed precision for a model with Ψ parameters: 2 Ψ bytes for fp16 parameters and gradients, 12Ψ bytes for optimizer states (parameters, momentum, variance). • Total: 16Ψ bytes; for GPT-2 with 1.5B parameters, this equals 24GB. **Residual Memory Consumption:**

 $f \rightarrow min$ [GPT-2 training Memory footprint](#page-1-0) $\mathbf{\Theta} = 3$ $\mathbf{\Theta} = 3$ $\mathbf{\Theta} = 3$

GPT-2 training Memory footprint Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but

 $f \rightarrow \min_{x,y,z}$

[Large batch training](#page-12-0)

Large batch training ¹

¹ [Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour](https://arxiv.org/abs/1706.02677)

Large batch training ² 64 128 256 512 1k 2k 4k 8k 16k 32k 64k mini-batch size 20 25 30 35 40 ImageNet top-1 validation error

²[Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour](https://arxiv.org/abs/1706.02677)

Large batch training ³

Comparison of learning rate scaling rules. ResNet-50 trained on ImageNet. A reference learning rate of $\alpha = 0.1$ works best for $kn = 256$ (23.68% error). The linear scaling rule suggests $\alpha = 0.1 \cdot 32$ when $kn = 8k$, which again gives best performance (23.74% error). Other ways of scaling α give worse results.

³[Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour](https://arxiv.org/abs/1706.02677)

Linear and square root scaling rules

When training with large batches, the learning rate must be adjusted to maintain convergence speed and stability. The **linear scaling rule**⁴ suggests multiplying the learning rate by the same factor as the increase in batch size:

> $\alpha_{\text{new}} = \alpha_{\text{base}} \cdot \frac{\text{Batch Size}_{\text{new}}}{\text{Batch Size}_{\text{new}}}$ Batch Size_{base}

The **square root scaling rule⁵ p**roposes scaling the learning rate with the square root of the batch size increase:

$$
\alpha_{\text{new}} = \alpha_{\text{base}} \cdot \sqrt{\frac{\text{Batch Size}_{\text{new}}}{\text{Batch Size}_{\text{base}}}}
$$

Authors claimed, that it suits for adaptive optimizers like Adam, RMSProp and etc. while linear scaling rule serves well for SGD.

⁴[Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour](https://arxiv.org/abs/1706.02677)

⁵[Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training](https://arxiv.org/abs/2006.09092)

Gradual warmup ⁶

Gradual warmup helps to avoid instability when starting with large learning rates by slowly increasing the learning rate from a small value to the target value over a few epochs. This is defined as:

$$
\alpha_t = \alpha_{\max} \cdot \frac{t}{T_w}
$$

where *t* is the current iteration and *T^w* is the warmup duration in iterations. In the original paper, authors used first 5 epochs for gradual warmup.

 6 [Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour](https://arxiv.org/abs/1706.02677)

Gradient accumulation

Gradient accumulation allows the effective batch size to be increased without requiring larger memory by accumulating gradients over several mini-batches:

```
Without gradient accumulation
```

```
for i, (inputs, targets) in enumerate(data):
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    loss.backward()
```

```
optimizer.step()
optimizer.zero_grad()
```


Gradient accumulation

Gradient accumulation allows the effective batch size to be increased without requiring larger memory by accumulating gradients over several mini-batches:

```
Without gradient accumulation
```

```
for i, (inputs, targets) in enumerate(data):
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    loss.backward()
```
optimizer.step() optimizer.zero_grad()

With gradient accumulation

```
for i, (inputs, targets) in enumerate(data):
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    loss.backward()
    if (i+1) % accumulation steps == 0:
        optimizer.step()
        optimizer.zero_grad()
```
[MultiGPU training](#page-20-0)

1. Parameter server sends the full copy of the model to each device

- 1. Parameter server sends the full copy of the model to each device
- 2. Each device makes forward and backward passes

- 1. Parameter server sends the full copy of the model to each device
- 2. Each device makes forward and backward passes
- 3. Parameter server gathers gradients

- 1. Parameter server sends the full copy of the model to each device
- 2. Each device makes forward and backward passes
- 3. Parameter server gathers gradients
- 4. Parameter server updates the model

- 1. Parameter server sends the full copy of the model to each device
- 2. Each device makes forward and backward passes
- 3. Parameter server gathers gradients
- 4. Parameter server updates the model

- 1. Parameter server sends the full copy of the model to each device
- 2. Each device makes forward and backward passes
- 3. Parameter server gathers gradients
- 4. Parameter server updates the model

Per device batch size: *b*. Overall batchsize: *Db*. Data parallelism involves splitting the data across multiple GPUs, each with a copy of the model. Gradients are averaged and weights updated synchronously:

Distributed Data Parallel training

Distributed Data Parallel (DDP) ⁷ extends data parallelism across multiple nodes. Each node computes gradients locally, then synchronizes with others. Below one can find differences from the PyTorch [site.](https://pytorch.org/tutorials/beginner/ddp_series_theory.html) This is used by default in **@**[Accelerate library.](https://huggingface.co/docs/transformers/accelerate)

⁷ [Getting Started with Distributed Data Parallel](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html)

Naive model parallelism

Model parallelism divides the model across multiple GPUs. Each GPU handles a subset of the model layers, reducing memory load per GPU. Allows to work with the models, that won't fit in the single GPU Poor resource utilization.

Figure 5: Model parallelism

Pipeline model parallelism (GPipe) ⁸

GPipe splits the model into stages, each processed sequentially. Micro-batches are passed through the pipeline, allowing for overlapping computation and communication:

⁸[GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism](https://arxiv.org/abs/1811.06965)

Pipeline model parallelism (PipeDream) ⁹

PipeDream uses asynchronous pipeline parallelism, balancing forward and backward passes across the pipeline stages to maximize utilization and reduce idle time:

⁹[PipeDream: Generalized Pipeline Parallelism for DNN Training](https://arxiv.org/abs/1806.03377)

ZeRO ¹⁰

¹⁰[ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054)

Automatic Mixed Precision training

Two copies of the models needed to be stored - fp32 and fp16 (fp8). Rewrite the computational graph with respect to the following idea:


```
torch.cuda.amp.autocast(dtype=torch.float16)(model_forward_func)
```
or

torch.autocast(device_type=self.device.type, dtype=torch.bfloat16)(model_forward_func)

LoRA ¹¹

LoRA reduces the number of parameters by approximating weight matrices with low-rank factorization:

 $W_{\text{new}} = W + \Delta W$

where $\Delta W = AB^T$, with *A* and *B* being low-rank
matrices. This reduces computational and moment overhead while maintaining model performance. matrices. This reduces computational and memory

zeroes in order to start from identity mapping
— • *A* is initialized as usual, while *B* is initialized with

LoRA ¹¹

LoRA reduces the number of parameters by approximating weight matrices with low-rank factorization:

 $W_{\text{new}} = W + \Delta W$

where $\Delta W = AB^T$, with *A* and *B* being low-rank
matrices. This reduces computational and moment overhead while maintaining model performance. matrices. This reduces computational and memory

- *A* is initialized as usual, while *B* is initialized with zeroes in order to start from identity mapping
- \bullet *r* is typically selected between 2 and 64

LoRA ¹¹

LoRA reduces the number of parameters by approximating weight matrices with low-rank factorization:

 $W_{\text{new}} = W + \Delta W$

where $\Delta W = AB^T$, with *A* and *B* being low-rank
matrices. This reduces computational and moment overhead while maintaining model performance. matrices. This reduces computational and memory

- *A* is initialized as usual, while *B* is initialized with zeroes in order to start from identity mapping
- \bullet *r* is typically selected between 2 and 64
- Usually applied to attention modules
LoRA ¹¹

LoRA reduces the number of parameters by approximating weight matrices with low-rank factorization:

 $W_{\text{new}} = W + \Delta W$

where $\Delta W = AB^T$, with *A* and *B* being low-rank
matrices. This reduces computational and moment overhead while maintaining model performance. matrices. This reduces computational and memory

- *A* is initialized as usual, while *B* is initialized with zeroes in order to start from identity mapping
- \bullet *r* is typically selected between 2 and 64
- Usually applied to attention modules

¹¹[LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) $f \rightarrow \min_{x,y,z}$ [MultiGPU training](#page-20-0) [v](https://mda24.fmin.xyz) [§](https://github.com/MerkulovDaniil/mda24) [}](https://t.me/fminxyz) 19

LoRA ¹¹

LoRA reduces the number of parameters by approximating weight matrices with low-rank factorization:

 $W_{\text{new}} = W + \Delta W$

where $\Delta W = AB^T$, with *A* and *B* being low-rank
matrices. This reduces computational and moment overhead while maintaining model performance. matrices. This reduces computational and memory

- *A* is initialized as usual, while *B* is initialized with zeroes in order to start from identity mapping
- \bullet *r* is typically selected between 2 and 64
- Usually applied to attention modules

$$
h = W_{\text{new}}x = Wx + \Delta Wx = Wx + AB^{T}x
$$

¹¹[LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) $f \rightarrow \min_{x,y,z}$ [MultiGPU training](#page-20-0) [v](https://mda24.fmin.xyz) [§](https://github.com/MerkulovDaniil/mda24) [}](https://t.me/fminxyz) 19

Feedforward Architecture

Figure 6: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations marked with an *f*. The gradient of the loss with respect to the activations and parameters marked with *b*.

Feedforward Architecture

Figure 6: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations marked with an *f*. The gradient of the loss with respect to the activations and parameters marked with *b*.

Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• All activations *f* are kept in memory after the forward pass.

Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• All activations *f* are kept in memory after the forward pass.

- All activations *f* are kept in memory after the forward pass.
	- Optimal in terms of computation: it only computes each node once.

- All activations *f* are kept in memory after the forward pass.
	- Optimal in terms of computation: it only computes each node once.

Figure 7: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

- All activations *f* are kept in memory after the forward pass.
	- Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• Each activation *f* is recalculated as needed.

Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• Each activation *f* is recalculated as needed.

- Each activation *f* is recalculated as needed.
	- Optimal in terms of memory: there is no need to store all activations in memory.

- Each activation *f* is recalculated as needed.
	- Optimal in terms of memory: there is no need to store all activations in memory.

Figure 8: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

- Each activation *f* is recalculated as needed.
	- Optimal in terms of memory: there is no need to store all activations in memory.

 \bullet Computationally inefficient. The number of node evaluations scales with n^2 , whereas it vanilla backprop scaled as *n*: each of the n nodes is recomputed on the order of *n* times.

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• Trade-off between the **vanilla** and **memory poor** approaches. The strategy is to mark a subset of the neural net activations as checkpoint nodes, that will be stored in memory.

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color indicates nodes that are stored in memory.

• Trade-off between the **vanilla** and **memory poor** approaches. The strategy is to mark a subset of the neural net activations as checkpoint nodes, that will be stored in memory.

- Trade-off between the **vanilla** and **memory poor** approaches. The strategy is to mark a subset of the neural net activations as checkpoint nodes, that will be stored in memory.
	- Faster recalculation of activations *f*. We only need to recompute the nodes between a *b* node and the last checkpoint preceding it when computing that *b* node during backprop.

- Trade-off between the **vanilla** and **memory poor** approaches. The strategy is to mark a subset of the neural net activations as checkpoint nodes, that will be stored in memory.
	- Faster recalculation of activations *f*. We only need to recompute the nodes between a *b* node and the last checkpoint preceding it when computing that *b* node during backprop.

- Trade-off between the **vanilla** and **memory poor** approaches. The strategy is to mark a subset of the neural net activations as checkpoint nodes, that will be stored in memory.
	- Faster recalculation of activations *f*. We only need to recompute the nodes between a *b* node and the last checkpoint preceding it when computing that *b* node during backprop.
	- Memory consumption depends on the number of checkpoints. More effective then **vanilla** approach.

Gradient checkpointing visualization

The animated visualization of the above approaches $\boldsymbol{\Theta}$ An example of using a gradient checkpointing Ω

[Quantization](#page-59-0)

Split the weight matrix into 2 well clustered factors ¹²

Figure 10: Scheme of post-training quantization approach.

¹² [Quantization of Large Language Models with an Overdetermined Basis](https://arxiv.org/abs/2404.09737)

 $f \rightarrow \min_{x,y,z}$

[Newton method](#page-61-0)

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$.

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$. The whole idea came from building a linear approximation at the point *x^k* and find its root, which will be the new iteration point:

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$. The whole idea came from building a linear approximation at the point *x^k* and find its root, which will be the new iteration point:

$$
\varphi'(x_k) = \frac{\varphi(x_k)}{x_{k+1} - x_k}
$$

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$. The whole idea came from building a linear approximation at the point *x^k* and find its root, which will be the new iteration point:

$$
\varphi'(x_k) = \frac{\varphi(x_k)}{x_{k+1} - x_k}
$$

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$. The whole idea came from building a linear approximation at the point *x^k* and find its root, which will be the new iteration point:

$$
\varphi'(x_k) = \frac{\varphi(x_k)}{x_{k+1} - x_k}
$$

We get an iterative scheme:

$$
x_{k+1} = x_k - \frac{\varphi(x_k)}{\varphi'(x_k)}.
$$

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$. The whole idea came from building a linear approximation at the point *x^k* and find its root, which will be the new iteration point:

$$
\varphi'(x_k) = \frac{\varphi(x_k)}{x_{k+1} - x_k}
$$

We get an iterative scheme:

$$
x_{k+1} = x_k - \frac{\varphi(x_k)}{\varphi'(x_k)}.
$$

Which will become a Newton optimization method in case $f'(x) = \varphi(x)^a$:

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$. The whole idea came from building a linear approximation at the point *x^k* and find its root, which will be the new iteration point:

$$
\varphi'(x_k) = \frac{\varphi(x_k)}{x_{k+1} - x_k}
$$

We get an iterative scheme:

$$
x_{k+1} = x_k - \frac{\varphi(x_k)}{\varphi'(x_k)}.
$$

Which will become a Newton optimization method in case $f'(x) = \varphi(x)^a$:

$$
x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)
$$

 a^a Literally we aim to solve the problem of finding stationary points $\nabla f(x) = 0$

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function $f(x)$ and a certain point x_k . Let us consider the quadratic approximation of this function near *xk*:

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function $f(x)$ and a certain point x_k . Let us consider the quadratic approximation of this function near *xk*:

$$
f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.
$$

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function $f(x)$ and a certain point x_k . Let us consider the quadratic approximation of this function near *xk*:

$$
f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.
$$

The idea of the method is to find the point x_{k+1} , that minimizes the function $f_{x_k}^{II}(x)$, i.e. $\nabla f_{x_k}^{II}(x_{k+1})=0$.

Let us now have the function $f(x)$ and a certain point x_k . Let us consider the quadratic approximation of this function near *xk*:

$$
f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.
$$

$$
\nabla f_{x_k}^{II}(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0
$$

Let us now have the function $f(x)$ and a certain point x_k . Let us consider the quadratic approximation of this function near *xk*:

$$
f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.
$$

$$
\nabla f_{x_k}^{II}(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0
$$

$$
\nabla^2 f(x_k)(x_{k+1} - x_k) = -\nabla f(x_k)
$$

Let us now have the function $f(x)$ and a certain point x_k . Let us consider the quadratic approximation of this function near *xk*:

$$
f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.
$$

$$
\nabla f_{x_k}^{II}(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0
$$

$$
\nabla^2 f(x_k)(x_{k+1} - x_k) = -\nabla f(x_k)
$$

$$
\left[\nabla^2 f(x_k)\right]^{-1} \nabla^2 f(x_k)(x_{k+1} - x_k) = -\left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)
$$

Let us now have the function $f(x)$ and a certain point x_k . Let us consider the quadratic approximation of this function near *xk*:

$$
f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.
$$

$$
\nabla f_{x_k}^{II}(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0
$$

$$
\nabla^2 f(x_k)(x_{k+1} - x_k) = -\nabla f(x_k)
$$

$$
\left[\nabla^2 f(x_k)\right]^{-1} \nabla^2 f(x_k)(x_{k+1} - x_k) = -\left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)
$$

$$
x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k).
$$

Let us now have the function $f(x)$ and a certain point x_k . Let us consider the quadratic approximation of this function near *xk*:

$$
f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.
$$

$$
\nabla f_{x_k}^{II}(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0
$$

$$
\nabla^2 f(x_k)(x_{k+1} - x_k) = -\nabla f(x_k)
$$

$$
\left[\nabla^2 f(x_k)\right]^{-1} \nabla^2 f(x_k)(x_{k+1} - x_k) = -\left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)
$$

$$
x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k).
$$

Let us now have the function $f(x)$ and a certain point x_k . Let us consider the quadratic approximation of this function near *xk*:

$$
f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.
$$

The idea of the method is to find the point x_{k+1} , that minimizes the function $f_{x_k}^{II}(x)$, i.e. $\nabla f_{x_k}^{II}(x_{k+1})=0$.

$$
\nabla f_{x_k}^{II}(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0
$$

$$
\nabla^2 f(x_k)(x_{k+1} - x_k) = -\nabla f(x_k)
$$

$$
\left[\nabla^2 f(x_k)\right]^{-1} \nabla^2 f(x_k)(x_{k+1} - x_k) = -\left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)
$$

$$
x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k).
$$

Let us immediately note the limitations related to the necessity of the Hessian's non-degeneracy (for the method to exist), as well as its positive definiteness (for the convergence guarantee).

Convergence

i Theorem

Let $f(x)$ be a strongly convex twice continuously differentiable function at \mathbb{R}^n , for the second derivative of which inequalities are executed: $\mu I_n \preceq \nabla^2 f(x) \preceq L I_n.$ Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is *M*-Lipschitz continuous, then this method converges locally to x^* at a quadratic rate.

Thus, we have an important result: Newton's method for the function with Lipschitz positive-definite Hessian $\textsf{converges}$ quadratically near $(\|x_0 - x^*\| < \frac{2\mu}{3M})$ to the solution.

An important property of Newton's method is **affine invariance**. Given a function *f* and a nonsingular matrix $A\in\mathbb{R}^{n\times n}$, let $x=Ay$, and define $g(y)=f(Ay).$ Note, that $\nabla g(y)=A^T\nabla f(x)$ and $\nabla^2 g(y)=A^T\nabla^2 f(x)A.$ The Newton steps on *g* are expressed as:

$$
y_{k+1} = y_k - \left(\nabla^2 g(y_k)\right)^{-1} \nabla g(y_k)
$$

An important property of Newton's method is **affine invariance**. Given a function *f* and a nonsingular matrix $A\in\mathbb{R}^{n\times n}$, let $x=Ay$, and define $g(y)=f(Ay).$ Note, that $\nabla g(y)=A^T\nabla f(x)$ and $\nabla^2 g(y)=A^T\nabla^2 f(x)A.$ The Newton steps on *g* are expressed as:

$$
y_{k+1} = y_k - \left(\nabla^2 g(y_k)\right)^{-1} \nabla g(y_k)
$$

Expanding this, we get:

$$
y_{k+1} = y_k - \left(A^T \nabla^2 f(A y_k) A\right)^{-1} A^T \nabla f(A y_k)
$$

An important property of Newton's method is **affine invariance**. Given a function *f* and a nonsingular matrix $A\in\mathbb{R}^{n\times n}$, let $x=Ay$, and define $g(y)=f(Ay).$ Note, that $\nabla g(y)=A^T\nabla f(x)$ and $\nabla^2 g(y)=A^T\nabla^2 f(x)A.$ The Newton steps on *g* are expressed as:

$$
y_{k+1} = y_k - \left(\nabla^2 g(y_k)\right)^{-1} \nabla g(y_k)
$$

Expanding this, we get:

$$
y_{k+1} = y_k - \left(A^T \nabla^2 f(A y_k) A\right)^{-1} A^T \nabla f(A y_k)
$$

Using the property of matrix inverse $(AB)^{-1}=B^{-1}A^{-1}.$ this simplifies to:

$$
y_{k+1} = y_k - A^{-1} \left(\nabla^2 f(Ay_k)\right)^{-1} \nabla f(Ay_k)
$$

$$
Ay_{k+1} = Ay_k - \left(\nabla^2 f(Ay_k)\right)^{-1} \nabla f(Ay_k)
$$

An important property of Newton's method is **affine invariance**. Given a function *f* and a nonsingular matrix $A\in\mathbb{R}^{n\times n}$, let $x=Ay$, and define $g(y)=f(Ay).$ Note, that $\nabla g(y)=A^T\nabla f(x)$ and $\nabla^2 g(y)=A^T\nabla^2 f(x)A.$ The Newton steps on *g* are expressed as:

$$
y_{k+1} = y_k - \left(\nabla^2 g(y_k)\right)^{-1} \nabla g(y_k)
$$

Expanding this, we get:

$$
y_{k+1} = y_k - \left(A^T \nabla^2 f(A y_k) A\right)^{-1} A^T \nabla f(A y_k)
$$

Using the property of matrix inverse $(AB)^{-1}=B^{-1}A^{-1}.$ this simplifies to:

$$
y_{k+1} = y_k - A^{-1} \left(\nabla^2 f(Ay_k)\right)^{-1} \nabla f(Ay_k)
$$

$$
Ay_{k+1} = Ay_k - \left(\nabla^2 f(Ay_k)\right)^{-1} \nabla f(Ay_k)
$$

Thus, the update rule for *x* is:

$$
x_{k+1} = x_k - \left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k)
$$

An important property of Newton's method is **affine invariance**. Given a function *f* and a nonsingular matrix $A\in\mathbb{R}^{n\times n}$, let $x=Ay$, and define $g(y)=f(Ay).$ Note, that $\nabla g(y)=A^T\nabla f(x)$ and $\nabla^2 g(y)=A^T\nabla^2 f(x)A.$ The Newton steps on *g* are expressed as:

$$
y_{k+1} = y_k - \left(\nabla^2 g(y_k)\right)^{-1} \nabla g(y_k)
$$

Expanding this, we get:

$$
y_{k+1} = y_k - \left(A^T \nabla^2 f(A y_k) A\right)^{-1} A^T \nabla f(A y_k)
$$

Using the property of matrix inverse $(AB)^{-1}=B^{-1}A^{-1}.$ this simplifies to:

$$
y_{k+1} = y_k - A^{-1} \left(\nabla^2 f(Ay_k)\right)^{-1} \nabla f(Ay_k)
$$

$$
Ay_{k+1} = Ay_k - \left(\nabla^2 f(Ay_k)\right)^{-1} \nabla f(Ay_k)
$$

Thus, the update rule for *x* is:

$$
x_{k+1} = x_k - \left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k)
$$

This shows that the progress made by Newton's method is independent of problem scaling. This property is not shared by the gradient descent method!

What's nice:

• quadratic convergence near the solution *x* ∗

What's nice:

- quadratic convergence near the solution *x* ∗
- affine invariance

What's nice:

- quadratic convergence near the solution *x* ∗
- affine invariance
- the parameters have little effect on the convergence rate

What's nice:

- quadratic convergence near the solution *x* ∗
- affine invariance
- the parameters have little effect on the convergence rate

What's nice:

- quadratic convergence near the solution *x* ∗
- affine invariance
- the parameters have little effect on the convergence rate

What's not nice:

 \bullet it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}(n^2)$ memory

What's nice:

- quadratic convergence near the solution *x* ∗
- affine invariance
- the parameters have little effect on the convergence rate

What's not nice:

- \bullet it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}(n^2)$ memory
- $\bullet\,$ it is necessary to solve linear systems: $\mathcal{O}(n^3)$ operations

What's nice:

- quadratic convergence near the solution *x* ∗
- affine invariance
- the parameters have little effect on the convergence rate

What's not nice:

- \bullet it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}(n^2)$ memory
- $\bullet\,$ it is necessary to solve linear systems: $\mathcal{O}(n^3)$ operations
- the Hessian can be degenerate at *x* ∗

What's nice:

- quadratic convergence near the solution *x* ∗
- affine invariance
- the parameters have little effect on the convergence rate

What's not nice:

- \bullet it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}(n^2)$ memory
- $\bullet\,$ it is necessary to solve linear systems: $\mathcal{O}(n^3)$ operations
- the Hessian can be degenerate at *x* ∗
- the hessian may not be positively determined \to direction $-(f''(x))^{-1}f'(x)$ may not be a descending direction

Newton method problems

Newton

Figure 17: Animation **D**

Newton method problems

Given $f(x)$ and a point x_0 . Define $B_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : d(x,x_0) = \varepsilon^2\}$ as the set of points with distance *ε* to *x*0. Here we presume the existence of a distance function $d(x, x_0)$.

Given $f(x)$ and a point x_0 . Define $B_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : d(x,x_0) = \varepsilon^2\}$ as the set of points with distance *ε* to *x*0. Here we presume the existence of a distance function $d(x, x_0)$.

$$
x^* = \arg\min_{x \in B_\varepsilon(x_0)} f(x)
$$

Given $f(x)$ and a point x_0 . Define $B_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : d(x,x_0) = \varepsilon^2\}$ as the set of points with distance *ε* to *x*0. Here we presume the existence of a distance function $d(x, x_0)$.

$$
x^* = \arg\min_{x\in B_\varepsilon(x_0)} f(x)
$$

Then, we can define another *steepest descent* direction in terms of minimizer of function on a sphere:

Given $f(x)$ and a point x_0 . Define $B_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : d(x,x_0) = \varepsilon^2\}$ as the set of points with distance *ε* to *x*0. Here we presume the existence of a distance function $d(x, x_0)$.

$$
x^* = \arg\min_{x\in B_\varepsilon(x_0)} f(x)
$$

Then, we can define another *steepest descent* direction in terms of minimizer of function on a sphere:

$$
s=\lim_{\varepsilon\to 0}\frac{x^*-x_0}{\varepsilon}
$$

Given $f(x)$ and a point x_0 . Define $B_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : d(x,x_0) = \varepsilon^2\}$ as the set of points with distance *ε* to *x*0. Here we presume the existence of a distance function $d(x, x_0)$.

$$
x^* = \arg\min_{x\in B_\varepsilon(x_0)} f(x)
$$

Then, we can define another *steepest descent* direction in terms of minimizer of function on a sphere:

$$
s=\lim_{\varepsilon\to 0}\frac{x^*-x_0}{\varepsilon}
$$

Let us assume that the distance is defined locally by some metric *A*:

$$
d(x, x_0) = (x - x_0)^{\top} A (x - x_0)
$$

Given $f(x)$ and a point $x₀$. Define $B_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : d(x,x_0) = \varepsilon^2\}$ as the set of points with distance *ε* to *x*0. Here we presume the existence of a distance function $d(x, x_0)$.

$$
x^* = \arg\min_{x \in B_\varepsilon(x_0)} f(x)
$$

Then, we can define another steepest descent direction in terms of minimizer of function on a sphere:

$$
s=\lim_{\varepsilon\to 0}\frac{x^*-x_0}{\varepsilon}
$$

Let us assume that the distance is defined locally by some metric *A*:

$$
d(x, x_0) = (x - x_0)^{\top} A (x - x_0)
$$

Let us also consider first order Taylor approximation of a function $f(x)$ near the point x_0 :

$$
f(x_0 + \delta x) \approx f(x_0) + \nabla f(x_0)^\top \delta x \tag{1}
$$

 $f \rightarrow \min_{x,y,z}$

Now we can explicitly pose a problem of finding *s*, as it was stated above.

$$
\min_{\delta x \in \mathbb{R}^{\kappa}} f(x_0 + \delta x)
$$

s.t. $\delta x^\top A \delta x = \varepsilon^2$

[Newton method](#page-61-0) $\qquad \qquad \bigoplus \; {\mathbf Q} \qquad \qquad 36$ $\qquad \qquad \bigoplus \; {\mathbf Q} \qquad \qquad 36$ $\qquad \qquad \bigoplus \; {\mathbf Q} \qquad \qquad 36$

Given $f(x)$ and a point $x₀$. Define $B_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : d(x,x_0) = \varepsilon^2\}$ as the set of points with distance *ε* to *x*0. Here we presume the existence of a distance function $d(x, x_0)$.

$$
x^* = \arg\min_{x \in B_\varepsilon(x_0)} f(x)
$$

Then, we can define another *steepest descent* direction in terms of minimizer of function on a sphere:

$$
s=\lim_{\varepsilon\to 0}\frac{x^*-x_0}{\varepsilon}
$$

Let us assume that the distance is defined locally by some metric *A*:

$$
d(x, x_0) = (x - x_0)^{\top} A (x - x_0)
$$

Let us also consider first order Taylor approximation of a function $f(x)$ near the point x_0 :

$$
f(x_0 + \delta x) \approx f(x_0) + \nabla f(x_0)^\top \delta x \tag{1}
$$

 $f \rightarrow \min_{x,y,z}$

Now we can explicitly pose a problem of finding *s*, as it was stated above.

$$
\min_{\delta x \in \mathbb{R}^{\kappa}} f(x_0 + \delta x)
$$

s.t. $\delta x^\top A \delta x = \varepsilon^2$

Using equation ([1](#page-100-0) it can be written as:

$$
\min_{\delta x \in \mathbb{R}^{\mathbb{K}}} \nabla f(x_0)^\top \delta x
$$

s.t. $\delta x^\top A \delta x = \varepsilon^2$

[Newton method](#page-61-0) $\qquad \qquad \bigoplus \; {\mathbf Q} \qquad \qquad 36$ $\qquad \qquad \bigoplus \; {\mathbf Q} \qquad \qquad 36$ $\qquad \qquad \bigoplus \; {\mathbf Q} \qquad \qquad 36$

Given $f(x)$ and a point $x₀$. Define $B_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : d(x,x_0) = \varepsilon^2\}$ as the set of points with distance *ε* to *x*0. Here we presume the existence of a distance function $d(x, x_0)$.

$$
x^* = \arg\min_{x\in B_\varepsilon(x_0)} f(x)
$$

Then, we can define another steepest descent direction in terms of minimizer of function on a sphere:

$$
s=\lim_{\varepsilon\to 0}\frac{x^*-x_0}{\varepsilon}
$$

Let us assume that the distance is defined locally by some metric *A*: Using Lagrange multipliers method, we can easily conclude, that the answer is:

$$
d(x, x_0) = (x - x_0)^{\top} A (x - x_0)
$$

Let us also consider first order Taylor approximation of a function $f(x)$ near the point x_0 :

$$
f(x_0 + \delta x) \approx f(x_0) + \nabla f(x_0)^\top \delta x \tag{1}
$$

 $f \rightarrow \min_{x,y,z}$

Now we can explicitly pose a problem of finding *s*, as it was stated above.

$$
\min_{\delta x \in \mathbb{R}^{\kappa}} f(x_0 + \delta x)
$$

s.t. $\delta x^\top A \delta x = \varepsilon^2$

Using equation ([1](#page-100-0) it can be written as:

$$
\min_{\delta x \in \mathbb{R}^{\mathbb{K}}} \nabla f(x_0)^\top \delta x
$$

s.t. $\delta x^\top A \delta x = \varepsilon^2$

δx = − $\frac{2ε^2}{\nabla$ *ε* $\frac{2\varepsilon}{\nabla f(x_0)^\top A^{-1}\nabla f(x_0)}A^{-1}\nabla f$
The idea of adapive metrics

Given $f(x)$ and a point $x₀$. Define $B_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : d(x,x_0) = \varepsilon^2\}$ as the set of points with distance *ε* to *x*0. Here we presume the existence of a distance function $d(x, x_0)$.

$$
x^* = \arg\min_{x\in B_\varepsilon(x_0)} f(x)
$$

Then, we can define another steepest descent direction in terms of minimizer of function on a sphere:

$$
s=\lim_{\varepsilon\to 0}\frac{x^*-x_0}{\varepsilon}
$$

Let us assume that the distance is defined locally by some metric *A*: Using Lagrange multipliers method, we can easily conclude, that the answer is:

$$
d(x, x_0) = (x - x_0)^{\top} A (x - x_0)
$$

Let us also consider first order Taylor approximation of a function $f(x)$ near the point x_0 :

$$
f(x_0 + \delta x) \approx f(x_0) + \nabla f(x_0)^\top \delta x
$$

 $f \rightarrow \min_{x,y,z}$

Now we can explicitly pose a problem of finding *s*, as it was stated above.

$$
\min_{\delta x \in \mathbb{R}^{\kappa}} f(x_0 + \delta x)
$$

s.t. $\delta x^\top A \delta x = \varepsilon^2$

Using equation ([1](#page-100-0) it can be written as:

$$
\min_{\delta x \in \mathbb{R}^{\mathbb{K}}} \nabla f(x_0)^\top \delta x
$$

s.t. $\delta x^\top A \delta x = \varepsilon^2$

$$
\delta x = -\frac{2\varepsilon^2}{\nabla f(x_0)^\top A^{-1} \nabla f(x_0)} A^{-1} \nabla f
$$

- Which means, that new direction of steepest descent is nothing else, but $A^{-1} \nabla f(x_0)$.
- $\tau \delta x$ (1) \ldots Indeed, if the space is isotropic and $A=I$, we immediately have gradient descent formula, while Newton [Newton method](#page-61-0) method method uses local Hessian as a metric matrix. \oplus \circ \bullet

[Quasi-Newton methods](#page-109-0)

For the classic task of unconditional optimization *f*(*x*) → min *x*∈R*ⁿ* the general scheme of iteration method is written as:

 $x_{k+1} = x_k + \alpha_k d_k$

For the classic task of unconditional optimization *f*(*x*) → min *x*∈R*ⁿ* the general scheme of iteration method is written as:

$$
x_{k+1} = x_k + \alpha_k d_k
$$

In the Newton method, the *d^k* direction (Newton's direction) is set by the linear system solution at each step:

$$
B_k d_k = -\nabla f(x_k), \quad B_k = \nabla^2 f(x_k)
$$

For the classic task of unconditional optimization *f*(*x*) → min *x*∈R*ⁿ* the general scheme of iteration method is written as:

$$
x_{k+1} = x_k + \alpha_k d_k
$$

In the Newton method, the *d^k* direction (Newton's direction) is set by the linear system solution at each step:

$$
B_k d_k = -\nabla f(x_k), \quad B_k = \nabla^2 f(x_k)
$$

i.e. at each iteration it is necessary to **compute** hessian and gradient and **solve** linear system.

For the classic task of unconditional optimization *f*(*x*) → min *x*∈R*ⁿ* the general scheme of iteration method is written as:

$$
x_{k+1} = x_k + \alpha_k d_k
$$

In the Newton method, the *d^k* direction (Newton's direction) is set by the linear system solution at each step:

$$
B_k d_k = -\nabla f(x_k), \quad B_k = \nabla^2 f(x_k)
$$

i.e. at each iteration it is necessary to **compute** hessian and gradient and **solve** linear system.

Note here that if we take a single matrix of $B_k = I_n$ as B_k at each step, we will exactly get the gradient descent method.

The general scheme of quasi-Newton methods is based on the selection of the *B^k* matrix so that it tends in some sense at $k\to\infty$ to the truth value of the Hessian $\nabla^2 f(x_k).$

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, ...$, repeat:

1. Solve $B_k d_k = -\nabla f(x_k)$

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, ...$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, ...$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, ...$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, ...$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute $(B_{k+1})^{-1}$ from $(B_k)^{-1}$.

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, ...$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute $(B_{k+1})^{-1}$ from $(B_k)^{-1}$.

Basic Idea: As B_k already contains information about the Hessian, use a suitable matrix update to form B_{k+1} .

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, ...$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute $(B_{k+1})^{-1}$ from $(B_k)^{-1}$.

Basic Idea: As B_k already contains information about the Hessian, use a suitable matrix update to form B_{k+1} .

Reasonable Requirement for B_{k+1} (motivated by the secant method):

$$
\nabla f(x_{k+1}) - \nabla f(x_k) = B_{k+1}(x_{k+1} - x_k) = B_{k+1}d_k
$$

$$
\Delta y_k = B_{k+1}\Delta x_k
$$

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, ...$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute $(B_{k+1})^{-1}$ from $(B_k)^{-1}$.

Basic Idea: As B_k already contains information about the Hessian, use a suitable matrix update to form B_{k+1} .

Reasonable Requirement for B_{k+1} (motivated by the secant method):

$$
\nabla f(x_{k+1}) - \nabla f(x_k) = B_{k+1}(x_{k+1} - x_k) = B_{k+1}d_k
$$

$$
\Delta y_k = B_{k+1}\Delta x_k
$$

In addition to the secant equation, we want:

• B_{k+1} to be symmetric

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, ...$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute $(B_{k+1})^{-1}$ from $(B_k)^{-1}$.

Basic Idea: As B_k already contains information about the Hessian, use a suitable matrix update to form B_{k+1} .

Reasonable Requirement for B_{k+1} (motivated by the secant method):

$$
\nabla f(x_{k+1}) - \nabla f(x_k) = B_{k+1}(x_{k+1} - x_k) = B_{k+1}d_k
$$

$$
\Delta y_k = B_{k+1}\Delta x_k
$$

In addition to the secant equation, we want:

- B_{k+1} to be symmetric
- B_{k+1} to be "close" to B_k

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, ...$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute $(B_{k+1})^{-1}$ from $(B_k)^{-1}$.

Basic Idea: As B_k already contains information about the Hessian, use a suitable matrix update to form B_{k+1} .

Reasonable Requirement for B_{k+1} (motivated by the secant method):

$$
\nabla f(x_{k+1}) - \nabla f(x_k) = B_{k+1}(x_{k+1} - x_k) = B_{k+1}d_k
$$

$$
\Delta y_k = B_{k+1}\Delta x_k
$$

In addition to the secant equation, we want:

- B_{k+1} to be symmetric
- B_{k+1} to be "close" to B_k
- $B_k \succ 0 \Rightarrow B_{k+1} \succ 0$

 \mathbb{R} \mathbb{R} \rightarrow $\lim_{x,y,z}$ [Quasi-Newton methods](#page-109-0) \mathfrak{P} 0 \mathfrak{Q} 39

Let's try an update of the form:

$$
B_{k+1} = B_k + a u u^T
$$

Let's try an update of the form:

$$
B_{k+1} = B_k + a u u^T
$$

The secant equation $B_{k+1}d_k = \Delta y_k$ yields:

$$
(au^T d_k)u = \Delta y_k - B_k d_k
$$

Let's try an update of the form:

$$
B_{k+1} = B_k + a u u^T
$$

The secant equation $B_{k+1}d_k = \Delta y_k$ yields:

$$
(au^T d_k)u = \Delta y_k - B_k d_k
$$

This only holds if *u* is a multiple of $\Delta y_k - B_k d_k$. Putting $u = \Delta y_k - B_k d_k$, we solve the above,

$$
a=\frac{1}{(\Delta y_k-B_kd_k)^Td_k},
$$

Let's try an update of the form:

$$
B_{k+1} = B_k + a u u^T
$$

The secant equation $B_{k+1}d_k = \Delta y_k$ yields:

$$
(au^T d_k)u = \Delta y_k - B_k d_k
$$

This only holds if *u* is a multiple of $\Delta y_k - B_k d_k$. Putting $u = \Delta y_k - B_k d_k$, we solve the above,

$$
a = \frac{1}{(\Delta y_k - B_k d_k)^T d_k},
$$

which leads to

$$
B_{k+1} = B_k + \frac{(\Delta y_k - B_k d_k)(\Delta y_k - B_k d_k)^T}{(\Delta y_k - B_k d_k)^T d_k}
$$

called the symmetric rank-one (SR1) update or Broyden method.

Symmetric Rank-One Update with inverse

How can we solve

$$
B_{k+1}d_{k+1} = -\nabla f(x_{k+1}),
$$

in order to take the next step? In addition to propagating B_k to B_{k+1} , let's propagate inverses, i.e., $C_k=B_k^{-1}$ to $C_{k+1} = (B_{k+1})^{-1}.$

Sherman-Morrison Formula:

The Sherman-Morrison formula states:

$$
(A + uvT)-1 = A-1 - \frac{A-1uvTA-1}{1 + vTA-1u}
$$

Thus, for the SR1 update, the inverse is also easily updated:

$$
C_{k+1} = C_k + \frac{(d_k - C_k \Delta y_k)(d_k - C_k \Delta y_k)^T}{(d_k - C_k \Delta y_k)^T \Delta y_k}
$$

In general, SR1 is simple and cheap, but it has a key shortcoming: it does not preserve positive definiteness.

Davidon-Fletcher-Powell Update

We could have pursued the same idea to update the inverse *C*:

 $C_{k+1} = C_k + a u u^T + b v v^T$.

Davidon-Fletcher-Powell Update

We could have pursued the same idea to update the inverse *C*:

$$
C_{k+1} = C_k + a u u^T + b v v^T.
$$

Multiplying by Δy_k , using the secant equation $d_k = C_k \Delta y_k$, and solving for *a*, *b*, yields:

$$
C_{k+1} = C_k - \frac{C_k \Delta y_k \Delta y_k^T C_k}{\Delta y_k^T C_k \Delta y_k} + \frac{d_k d_k^T}{\Delta y_k^T d_k}
$$

Woodbury Formula Application

Woodbury then shows:

$$
B_{k+1} = \left(I - \frac{\Delta y_k d_k^T}{\Delta y_k^T d_k}\right) B_k \left(I - \frac{d_k \Delta y_k^T}{\Delta y_k^T d_k}\right) + \frac{\Delta y_k \Delta y_k^T}{\Delta y_k^T d_k}
$$

This is the Davidon-Fletcher-Powell (DFP) update. Also cheap: *O*(*n* 2), preserves positive definiteness. Not as popular as BFGS.

Broyden-Fletcher-Goldfarb-Shanno update

Let's now try a rank-two update:

$$
B_{k+1} = B_k + a u u^T + b v v^T.
$$

Broyden-Fletcher-Goldfarb-Shanno update

Let's now try a rank-two update:

$$
B_{k+1} = B_k + a u u^T + b v v^T.
$$

The secant equation $\Delta y_k = B_{k+1} d_k$ yields:

$$
\Delta y_k - B_k d_k = (au^T d_k)u + (bv^T d_k)v
$$

Broyden-Fletcher-Goldfarb-Shanno update

Let's now try a rank-two update:

$$
B_{k+1} = B_k + a u u^T + b v v^T.
$$

The secant equation $\Delta y_k = B_{k+1} d_k$ yields:

$$
\Delta y_k - B_k d_k = (au^T d_k)u + (bv^T d_k)v
$$

Putting $u = \Delta y_k$, $v = B_k d_k$, and solving for a, b we get:

$$
B_{k+1} = B_k - \frac{B_k d_k d_k^T B_k}{d_k^T B_k d_k} + \frac{\Delta y_k \Delta y_k^T}{d_k^T \Delta y_k}
$$

called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.

Broyden-Fletcher-Goldfarb-Shanno update with inverse

Woodbury Formula

The Woodbury formula, a generalization of the Sherman-Morrison formula, is given by:

$$
(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}
$$

Broyden-Fletcher-Goldfarb-Shanno update with inverse

Woodbury Formula

The Woodbury formula, a generalization of the Sherman-Morrison formula, is given by:

$$
(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}
$$

Applied to our case, we get a rank-two update on the inverse *C*:

$$
C_{k+1} = C_k + \frac{(d_k - C_k \Delta y_k) d_k^T}{\Delta y_k^T d_k} + \frac{d_k (d_k - C_k \Delta y_k)^T}{\Delta y_k^T d_k} - \frac{(d_k - C_k \Delta y_k)^T \Delta y_k}{(\Delta y_k^T d_k)^2} d_k d_k^T
$$

$$
C_{k+1} = \left(I - \frac{d_k \Delta y_k^T}{\Delta y_k^T d_k}\right) C_k \left(I - \frac{\Delta y_k d_k^T}{\Delta y_k^T d_k}\right) + \frac{d_k d_k^T}{\Delta y_k^T d_k}
$$

This formulation ensures that the BFGS update, while comprehensive, remains computationally efficient, requiring $O(n^2)$ operations. Importantly, BFGS update preserves positive definiteness. Recall this means $B_k \succ 0 \Rightarrow B_{k+1} \succ 0$. Equivalently, $C_k \succ 0 \Rightarrow C_{k+1} \succ 0$

Code

• [Open In Colab](https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Quasi_Newton.ipynb)

Code

- [Open In Colab](https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Quasi_Newton.ipynb)
- [Comparison of quasi Newton methods](https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb)

Code

- [Open In Colab](https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Quasi_Newton.ipynb)
- [Comparison of quasi Newton methods](https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb)
- [Some practical notes about Newton method](https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Newton.ipynb)

