
Optimization problems. CVXPY. Basic linear
algebra recap.

Daniil Merkulov

Applied Math for Data Science. Sberuniversity.

v § } 1

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Optimization problems

Optimization problems v § } 2

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Transportation problem

Customer / Source Arnhem [*/ton] Gouda [*/ton] Demand [tons]
London n/a 2.5 125
Berlin 2.5 n/a 175

Maastricht 1.6 2.0 225
Amsterdam 1.4 1.0 250

Utrecht 0.8 1.0 225
The Hague 1.4 0.8 200

Supply [tons] 550 tons 700 tons n/a

minimize: Cost =
∑

c∈Customers

∑
s∈Sources

T [c, s]x[c, s]

∑
c∈Customers

x[c, s] ≤ Supply[s] ∀s ∈ Sources

∑
s∈Sources

x[c, s] = Demand[c] ∀c ∈ Customers

This can be represented in the
following graph:

Figure 1: Graph associated with the
problem

Optimization problems v § } 3

https://jckantor.github.io/ND-Pyomo-Cookbook/notebooks/03.01-Transportation-Networks.html
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Transportation problem

Customer / Source Arnhem [*/ton] Gouda [*/ton] Demand [tons]
London n/a 2.5 125
Berlin 2.5 n/a 175

Maastricht 1.6 2.0 225
Amsterdam 1.4 1.0 250

Utrecht 0.8 1.0 225
The Hague 1.4 0.8 200

Supply [tons] 550 tons 700 tons n/a

minimize: Cost =
∑

c∈Customers

∑
s∈Sources

T [c, s]x[c, s]

∑
c∈Customers

x[c, s] ≤ Supply[s] ∀s ∈ Sources

∑
s∈Sources

x[c, s] = Demand[c] ∀c ∈ Customers

This can be represented in the
following graph:

Figure 1: Graph associated with the
problem

Optimization problems v § } 3

https://jckantor.github.io/ND-Pyomo-Cookbook/notebooks/03.01-Transportation-Networks.html
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Example: Transportation problem

Customer / Source Arnhem [*/ton] Gouda [*/ton] Demand [tons]
London n/a 2.5 125
Berlin 2.5 n/a 175

Maastricht 1.6 2.0 225
Amsterdam 1.4 1.0 250

Utrecht 0.8 1.0 225
The Hague 1.4 0.8 200

Supply [tons] 550 tons 700 tons n/a

minimize: Cost =
∑

c∈Customers

∑
s∈Sources

T [c, s]x[c, s]

∑
c∈Customers

x[c, s] ≤ Supply[s] ∀s ∈ Sources

∑
s∈Sources

x[c, s] = Demand[c] ∀c ∈ Customers

This can be represented in the
following graph:

Figure 1: Graph associated with the
problem

Optimization problems v § } 3

https://jckantor.github.io/ND-Pyomo-Cookbook/notebooks/03.01-Transportation-Networks.html
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Hardware progress vs Software progress
What would you choose, assuming, that the question posed correctly (you can compile software for any hardware
and the problem is the same for both options)? We will consider the time period from 1992 to 2023.

\ Hardware

Solving MIP with an old software on the modern
hardware

\ Software

Solving MIP with a modern software on the old
hardware

≈ 1.664.510 x speedup

Moore’s law states, that computational power doubles
every 18 monthes.

≈ 2.349.000 x speedup

R. Bixby conducted an intensive experiment with
benchmarking all CPLEX software version starting from
1992 to 2007 and measured overall software progress
(29000 times), later (in 2009) he was a cofounder of
Gurobi optimization software, which gives additional ≈ 81
speedup on MILP.

It turns out that if you need to solve a MILP, it is better to use an old computer and modern methods than vice
versa, the newest computer and methods of the early 1990s!1

1 R. Bixby report Recent study

Optimization problems v § } 4

https://www.gurobi.com/features/gurobi-optimizer-delivers-unmatched-performance/
https://www.math.uni-bielefeld.de/documenta/vol-ismp/25_bixby-robert.pdf
https://plato.asu.edu/talks/japan23.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Hardware progress vs Software progress
What would you choose, assuming, that the question posed correctly (you can compile software for any hardware
and the problem is the same for both options)? We will consider the time period from 1992 to 2023.

\ Hardware

Solving MIP with an old software on the modern
hardware

\ Software

Solving MIP with a modern software on the old
hardware

≈ 1.664.510 x speedup

Moore’s law states, that computational power doubles
every 18 monthes.

≈ 2.349.000 x speedup

R. Bixby conducted an intensive experiment with
benchmarking all CPLEX software version starting from
1992 to 2007 and measured overall software progress
(29000 times), later (in 2009) he was a cofounder of
Gurobi optimization software, which gives additional ≈ 81
speedup on MILP.

It turns out that if you need to solve a MILP, it is better to use an old computer and modern methods than vice
versa, the newest computer and methods of the early 1990s!1

1 R. Bixby report Recent study

Optimization problems v § } 4

https://www.gurobi.com/features/gurobi-optimizer-delivers-unmatched-performance/
https://www.math.uni-bielefeld.de/documenta/vol-ismp/25_bixby-robert.pdf
https://plato.asu.edu/talks/japan23.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Hardware progress vs Software progress
What would you choose, assuming, that the question posed correctly (you can compile software for any hardware
and the problem is the same for both options)? We will consider the time period from 1992 to 2023.

\ Hardware

Solving MIP with an old software on the modern
hardware

\ Software

Solving MIP with a modern software on the old
hardware

≈ 1.664.510 x speedup

Moore’s law states, that computational power doubles
every 18 monthes.

≈ 2.349.000 x speedup

R. Bixby conducted an intensive experiment with
benchmarking all CPLEX software version starting from
1992 to 2007 and measured overall software progress
(29000 times), later (in 2009) he was a cofounder of
Gurobi optimization software, which gives additional ≈ 81
speedup on MILP.

It turns out that if you need to solve a MILP, it is better to use an old computer and modern methods than vice
versa, the newest computer and methods of the early 1990s!1

1 R. Bixby report Recent study

Optimization problems v § } 4

https://www.gurobi.com/features/gurobi-optimizer-delivers-unmatched-performance/
https://www.math.uni-bielefeld.de/documenta/vol-ismp/25_bixby-robert.pdf
https://plato.asu.edu/talks/japan23.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

CVXPY Library

CVXPY Library v § } 5

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

CVXPY python library overview
CVXPY is an open-source Python library designed for solving convex optimization problems. It provides a high-level
interface for defining and solving a wide range of optimization problems, making it a powerful tool for researchers,
engineers, and data scientists.

• User-Friendly Syntax. CVXPY uses a natural mathematical syntax, making it easy to formulate optimization
problems.
import cvxpy as cp
x = cp.Variable()
objective = cp.Minimize(x**2)
constraints = [x >= 1]
prob = cp.Problem(objective, constraints)
result = prob.solve()

• Wide Range of Applications. CVXPY can be used in various fields such as finance, machine learning, control
theory, and more. It supports linear programs (LP), quadratic programs (QP), second-order cone programs
(SOCP), and semidefinite programs (SDP).
• Integration with Scientific Libraries. CVXPY integrates seamlessly with other scientific libraries like NumPy,

SciPy, and Pandas, allowing for easy manipulation of data and embedding of optimization problems within
larger scientific workflows.

CVXPY Library v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

CVXPY python library overview
CVXPY is an open-source Python library designed for solving convex optimization problems. It provides a high-level
interface for defining and solving a wide range of optimization problems, making it a powerful tool for researchers,
engineers, and data scientists.
• User-Friendly Syntax. CVXPY uses a natural mathematical syntax, making it easy to formulate optimization

problems.
import cvxpy as cp
x = cp.Variable()
objective = cp.Minimize(x**2)
constraints = [x >= 1]
prob = cp.Problem(objective, constraints)
result = prob.solve()

• Wide Range of Applications. CVXPY can be used in various fields such as finance, machine learning, control
theory, and more. It supports linear programs (LP), quadratic programs (QP), second-order cone programs
(SOCP), and semidefinite programs (SDP).
• Integration with Scientific Libraries. CVXPY integrates seamlessly with other scientific libraries like NumPy,

SciPy, and Pandas, allowing for easy manipulation of data and embedding of optimization problems within
larger scientific workflows.

CVXPY Library v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

CVXPY python library overview
CVXPY is an open-source Python library designed for solving convex optimization problems. It provides a high-level
interface for defining and solving a wide range of optimization problems, making it a powerful tool for researchers,
engineers, and data scientists.
• User-Friendly Syntax. CVXPY uses a natural mathematical syntax, making it easy to formulate optimization

problems.
import cvxpy as cp
x = cp.Variable()
objective = cp.Minimize(x**2)
constraints = [x >= 1]
prob = cp.Problem(objective, constraints)
result = prob.solve()

• Wide Range of Applications. CVXPY can be used in various fields such as finance, machine learning, control
theory, and more. It supports linear programs (LP), quadratic programs (QP), second-order cone programs
(SOCP), and semidefinite programs (SDP).

• Integration with Scientific Libraries. CVXPY integrates seamlessly with other scientific libraries like NumPy,
SciPy, and Pandas, allowing for easy manipulation of data and embedding of optimization problems within
larger scientific workflows.

CVXPY Library v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

CVXPY python library overview
CVXPY is an open-source Python library designed for solving convex optimization problems. It provides a high-level
interface for defining and solving a wide range of optimization problems, making it a powerful tool for researchers,
engineers, and data scientists.
• User-Friendly Syntax. CVXPY uses a natural mathematical syntax, making it easy to formulate optimization

problems.
import cvxpy as cp
x = cp.Variable()
objective = cp.Minimize(x**2)
constraints = [x >= 1]
prob = cp.Problem(objective, constraints)
result = prob.solve()

• Wide Range of Applications. CVXPY can be used in various fields such as finance, machine learning, control
theory, and more. It supports linear programs (LP), quadratic programs (QP), second-order cone programs
(SOCP), and semidefinite programs (SDP).
• Integration with Scientific Libraries. CVXPY integrates seamlessly with other scientific libraries like NumPy,

SciPy, and Pandas, allowing for easy manipulation of data and embedding of optimization problems within
larger scientific workflows.

CVXPY Library v § } 6

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

CVXPY Example
Minimize the function f(x, y) = x2 + y2 s.t. x + y = 1 x− y ≥ 1
import cvxpy as cp

Define variables
x = cp.Variable()
y = cp.Variable()

Define objective
objective = cp.Minimize(x**2 + y**2)

Define constraints
constraints = [x + y == 1, x - y >= 1]

Form and solve problem
prob = cp.Problem(objective, constraints)
result = prob.solve()

print(f"Optimal value: {result}")
print(f"Optimal variables: x = {x.value}, y = {y.value}")

CVXPY Library v § } 7

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

CVXPY exercises

• CVXPY Examples

• 3Exercise

CVXPY Library v § } 8

https://www.cvxpy.org/examples/index.html
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/CVXPY_Exercise.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

CVXPY exercises

• CVXPY Examples
• 3Exercise

CVXPY Library v § } 8

https://www.cvxpy.org/examples/index.html
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/CVXPY_Exercise.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Basic linear algebra background

Basic linear algebra background v § } 9

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vectors and matrices
We will treat all vectors as column vectors by default. The space of real vectors of length n is denoted by Rn, while
the space of real-valued m× n matrices is denoted by Rm×n. That’s it: 2

x =


x1
x2
...

xn

 xT =
[
x1 x2 . . . xn

]
x ∈ Rn, xi ∈ R (1)

Similarly, if A ∈ Rm×n we denote transposition as AT ∈ Rn×m:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 AT =


a11 a21 . . . am1
a12 a22 . . . am2

...
...

. . .
...

a1n a2n . . . amn

 A ∈ Rm×n, aij ∈ R

We will write x ≥ 0 and x ̸= 0 to indicate componentwise relationships

2A full introduction to applied linear algebra can be found in Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares -
book by Stephen Boyd & Lieven Vandenberghe, which is indicated in the source. Also, a useful refresher for linear algebra is in Appendix A of
the book Numerical Optimization by Jorge Nocedal Stephen J. Wright.

Basic linear algebra background v § } 10

https://web.stanford.edu/~boyd/vmls/
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Vectors and matrices
We will treat all vectors as column vectors by default. The space of real vectors of length n is denoted by Rn, while
the space of real-valued m× n matrices is denoted by Rm×n. That’s it: 2

x =


x1
x2
...

xn

 xT =
[
x1 x2 . . . xn

]
x ∈ Rn, xi ∈ R (1)

Similarly, if A ∈ Rm×n we denote transposition as AT ∈ Rn×m:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 AT =


a11 a21 . . . am1
a12 a22 . . . am2

...
...

. . .
...

a1n a2n . . . amn

 A ∈ Rm×n, aij ∈ R

We will write x ≥ 0 and x ̸= 0 to indicate componentwise relationships
2A full introduction to applied linear algebra can be found in Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares -

book by Stephen Boyd & Lieven Vandenberghe, which is indicated in the source. Also, a useful refresher for linear algebra is in Appendix A of
the book Numerical Optimization by Jorge Nocedal Stephen J. Wright.

Basic linear algebra background v § } 10

https://web.stanford.edu/~boyd/vmls/
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Figure 2: Equivivalent representations of a vector

Basic linear algebra background v § } 11

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

A matrix is symmetric if A = AT . It is denoted as A ∈ Sn (set of square symmetric matrices of dimension n). Note,
that only a square matrix could be symmetric by definition.

A matrix A ∈ Sn is called positive (negative) definite if for all x ̸= 0 : xT Ax > (<)0. We denote this as
A ≻ (≺)0. The set of such matrices is denoted as Sn

++(Sn
−−)

A matrix A ∈ Sn is called positive (negative) semidefinite if for all x : xT Ax ≥ (≤)0. We denote this as
A ⪰ (⪯)0. The set of such matrices is denoted as Sn

+(Sn
−)

ñ Question

Is it correct, that a positive definite matrix has all positive entries?

ñ Question

Is it correct, that if a matrix is symmetric it should be positive definite?

ñ Question

Is it correct, that if a matrix is positive definite it should be symmetric?

Basic linear algebra background v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

A matrix is symmetric if A = AT . It is denoted as A ∈ Sn (set of square symmetric matrices of dimension n). Note,
that only a square matrix could be symmetric by definition.

A matrix A ∈ Sn is called positive (negative) definite if for all x ̸= 0 : xT Ax > (<)0. We denote this as
A ≻ (≺)0. The set of such matrices is denoted as Sn

++(Sn
−−)

A matrix A ∈ Sn is called positive (negative) semidefinite if for all x : xT Ax ≥ (≤)0. We denote this as
A ⪰ (⪯)0. The set of such matrices is denoted as Sn

+(Sn
−)

ñ Question

Is it correct, that a positive definite matrix has all positive entries?

ñ Question

Is it correct, that if a matrix is symmetric it should be positive definite?

ñ Question

Is it correct, that if a matrix is positive definite it should be symmetric?

Basic linear algebra background v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

A matrix is symmetric if A = AT . It is denoted as A ∈ Sn (set of square symmetric matrices of dimension n). Note,
that only a square matrix could be symmetric by definition.

A matrix A ∈ Sn is called positive (negative) definite if for all x ̸= 0 : xT Ax > (<)0. We denote this as
A ≻ (≺)0. The set of such matrices is denoted as Sn

++(Sn
−−)

A matrix A ∈ Sn is called positive (negative) semidefinite if for all x : xT Ax ≥ (≤)0. We denote this as
A ⪰ (⪯)0. The set of such matrices is denoted as Sn

+(Sn
−)

ñ Question

Is it correct, that a positive definite matrix has all positive entries?

ñ Question

Is it correct, that if a matrix is symmetric it should be positive definite?

ñ Question

Is it correct, that if a matrix is positive definite it should be symmetric?

Basic linear algebra background v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

A matrix is symmetric if A = AT . It is denoted as A ∈ Sn (set of square symmetric matrices of dimension n). Note,
that only a square matrix could be symmetric by definition.

A matrix A ∈ Sn is called positive (negative) definite if for all x ̸= 0 : xT Ax > (<)0. We denote this as
A ≻ (≺)0. The set of such matrices is denoted as Sn

++(Sn
−−)

A matrix A ∈ Sn is called positive (negative) semidefinite if for all x : xT Ax ≥ (≤)0. We denote this as
A ⪰ (⪯)0. The set of such matrices is denoted as Sn

+(Sn
−)

ñ Question

Is it correct, that a positive definite matrix has all positive entries?

ñ Question

Is it correct, that if a matrix is symmetric it should be positive definite?

ñ Question

Is it correct, that if a matrix is positive definite it should be symmetric?

Basic linear algebra background v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

A matrix is symmetric if A = AT . It is denoted as A ∈ Sn (set of square symmetric matrices of dimension n). Note,
that only a square matrix could be symmetric by definition.

A matrix A ∈ Sn is called positive (negative) definite if for all x ̸= 0 : xT Ax > (<)0. We denote this as
A ≻ (≺)0. The set of such matrices is denoted as Sn

++(Sn
−−)

A matrix A ∈ Sn is called positive (negative) semidefinite if for all x : xT Ax ≥ (≤)0. We denote this as
A ⪰ (⪯)0. The set of such matrices is denoted as Sn

+(Sn
−)

ñ Question

Is it correct, that a positive definite matrix has all positive entries?

ñ Question

Is it correct, that if a matrix is symmetric it should be positive definite?

ñ Question

Is it correct, that if a matrix is positive definite it should be symmetric?

Basic linear algebra background v § } 12

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix product (matmul)

Let A be a matrix of size m× n, and B be a matrix of size n× p, and let the product AB be:

C = AB

then C is a m× p matrix, with element (i, j) given by:

cij =
n∑

k=1

aikbkj .

This operation in a naive form requires O(n3) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

ñ Question

Is it possible to multiply two matrices faster, than O(n3)? How about O(n2), O(n)?

Basic linear algebra background v § } 13

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix product (matmul)

Let A be a matrix of size m× n, and B be a matrix of size n× p, and let the product AB be:

C = AB

then C is a m× p matrix, with element (i, j) given by:

cij =
n∑

k=1

aikbkj .

This operation in a naive form requires O(n3) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

ñ Question

Is it possible to multiply two matrices faster, than O(n3)? How about O(n2), O(n)?

Basic linear algebra background v § } 13

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix by vector product (matvec)

Let A be a matrix of shape m× n, and x be n× 1 vector, then the i-th component of the product:

z = Ax

is given by:

zi =
n∑

k=1

aikxk

This operation in a naive form requires O(n2) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

Remember, that:
• C = AB CT = BT AT

• AB ̸= BA

• eA =
∞∑

k=0

1
k! A

k

• eA+B ̸= eAeB (but if A and B are commuting matrices, which means that AB = BA, eA+B = eAeB)
• ⟨x, Ay⟩ = ⟨AT x, y⟩

Basic linear algebra background v § } 14

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix by vector product (matvec)

Let A be a matrix of shape m× n, and x be n× 1 vector, then the i-th component of the product:

z = Ax

is given by:

zi =
n∑

k=1

aikxk

This operation in a naive form requires O(n2) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

Remember, that:
• C = AB CT = BT AT

• AB ̸= BA

• eA =
∞∑

k=0

1
k! A

k

• eA+B ̸= eAeB (but if A and B are commuting matrices, which means that AB = BA, eA+B = eAeB)
• ⟨x, Ay⟩ = ⟨AT x, y⟩

Basic linear algebra background v § } 14

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix by vector product (matvec)

Let A be a matrix of shape m× n, and x be n× 1 vector, then the i-th component of the product:

z = Ax

is given by:

zi =
n∑

k=1

aikxk

This operation in a naive form requires O(n2) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

Remember, that:
• C = AB CT = BT AT

• AB ̸= BA

• eA =
∞∑

k=0

1
k! A

k

• eA+B ̸= eAeB (but if A and B are commuting matrices, which means that AB = BA, eA+B = eAeB)
• ⟨x, Ay⟩ = ⟨AT x, y⟩

Basic linear algebra background v § } 14

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix by vector product (matvec)

Let A be a matrix of shape m× n, and x be n× 1 vector, then the i-th component of the product:

z = Ax

is given by:

zi =
n∑

k=1

aikxk

This operation in a naive form requires O(n2) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

Remember, that:
• C = AB CT = BT AT

• AB ̸= BA

• eA =
∞∑

k=0

1
k! A

k

• eA+B ̸= eAeB (but if A and B are commuting matrices, which means that AB = BA, eA+B = eAeB)

• ⟨x, Ay⟩ = ⟨AT x, y⟩

Basic linear algebra background v § } 14

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix by vector product (matvec)

Let A be a matrix of shape m× n, and x be n× 1 vector, then the i-th component of the product:

z = Ax

is given by:

zi =
n∑

k=1

aikxk

This operation in a naive form requires O(n2) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

Remember, that:
• C = AB CT = BT AT

• AB ̸= BA

• eA =
∞∑

k=0

1
k! A

k

• eA+B ̸= eAeB (but if A and B are commuting matrices, which means that AB = BA, eA+B = eAeB)
• ⟨x, Ay⟩ = ⟨AT x, y⟩

Basic linear algebra background v § } 14

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Norms
Norm is a qualitative measure of the smallness of a vector and is typically denoted as ∥x∥.

The norm should satisfy certain properties:

1. ∥αx∥ = |α|∥x∥, α ∈ R

2. ∥x + y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)
3. If ∥x∥ = 0 then x = 0

The distance between two vectors is then defined as
d(x, y) = ∥x− y∥.

The most well-known and widely used norm is Euclidean norm:

∥x∥2 =

√√√√ n∑
i=1

|xi|2,

which corresponds to the distance in our real life. If the vectors have complex elements, we use their modulus.
Euclidean norm, or 2-norm, is a subclass of an important class of p-norms:

∥x∥p =
(n∑

i=1

|xi|p
)1/p

.

Basic linear algebra background v § } 15

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Norms
Norm is a qualitative measure of the smallness of a vector and is typically denoted as ∥x∥.

The norm should satisfy certain properties:

1. ∥αx∥ = |α|∥x∥, α ∈ R
2. ∥x + y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)

3. If ∥x∥ = 0 then x = 0

The distance between two vectors is then defined as
d(x, y) = ∥x− y∥.

The most well-known and widely used norm is Euclidean norm:

∥x∥2 =

√√√√ n∑
i=1

|xi|2,

which corresponds to the distance in our real life. If the vectors have complex elements, we use their modulus.
Euclidean norm, or 2-norm, is a subclass of an important class of p-norms:

∥x∥p =
(n∑

i=1

|xi|p
)1/p

.

Basic linear algebra background v § } 15

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Norms
Norm is a qualitative measure of the smallness of a vector and is typically denoted as ∥x∥.

The norm should satisfy certain properties:

1. ∥αx∥ = |α|∥x∥, α ∈ R
2. ∥x + y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)
3. If ∥x∥ = 0 then x = 0

The distance between two vectors is then defined as
d(x, y) = ∥x− y∥.

The most well-known and widely used norm is Euclidean norm:

∥x∥2 =

√√√√ n∑
i=1

|xi|2,

which corresponds to the distance in our real life. If the vectors have complex elements, we use their modulus.
Euclidean norm, or 2-norm, is a subclass of an important class of p-norms:

∥x∥p =
(n∑

i=1

|xi|p
)1/p

.

Basic linear algebra background v § } 15

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Norms
Norm is a qualitative measure of the smallness of a vector and is typically denoted as ∥x∥.

The norm should satisfy certain properties:

1. ∥αx∥ = |α|∥x∥, α ∈ R
2. ∥x + y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)
3. If ∥x∥ = 0 then x = 0

The distance between two vectors is then defined as
d(x, y) = ∥x− y∥.

The most well-known and widely used norm is Euclidean norm:

∥x∥2 =

√√√√ n∑
i=1

|xi|2,

which corresponds to the distance in our real life. If the vectors have complex elements, we use their modulus.
Euclidean norm, or 2-norm, is a subclass of an important class of p-norms:

∥x∥p =
(n∑

i=1

|xi|p
)1/p

.

Basic linear algebra background v § } 15

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Norms
Norm is a qualitative measure of the smallness of a vector and is typically denoted as ∥x∥.

The norm should satisfy certain properties:

1. ∥αx∥ = |α|∥x∥, α ∈ R
2. ∥x + y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)
3. If ∥x∥ = 0 then x = 0

The distance between two vectors is then defined as
d(x, y) = ∥x− y∥.

The most well-known and widely used norm is Euclidean norm:

∥x∥2 =

√√√√ n∑
i=1

|xi|2,

which corresponds to the distance in our real life. If the vectors have complex elements, we use their modulus.
Euclidean norm, or 2-norm, is a subclass of an important class of p-norms:

∥x∥p =
(n∑

i=1

|xi|p
)1/p

.

Basic linear algebra background v § } 15

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

p-norm of a vector
There are two very important special cases. The infinity norm, or Chebyshev norm is defined as the element of the
maximal absolute value:

∥x∥∞ = max
i
|xi|

L1 norm (or Manhattan distance) which is defined as the sum of modules of the elements of x:

∥x∥1 =
∑

i

|xi|

L1 norm plays a very important role: it all relates to the compressed sensing methods that emerged in the mid-00s
as one of the most popular research topics. The code for the picture below is available here:. Check also this video.

Figure 3: Balls in different norms on a plane

Basic linear algebra background v § } 16

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Balls_p_norm.ipynb
https://fmin.xyz/docs/theory/balls_norm.mp4
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

p-norm of a vector
There are two very important special cases. The infinity norm, or Chebyshev norm is defined as the element of the
maximal absolute value:

∥x∥∞ = max
i
|xi|

L1 norm (or Manhattan distance) which is defined as the sum of modules of the elements of x:

∥x∥1 =
∑

i

|xi|

L1 norm plays a very important role: it all relates to the compressed sensing methods that emerged in the mid-00s
as one of the most popular research topics. The code for the picture below is available here:. Check also this video.

Figure 3: Balls in different norms on a plane

Basic linear algebra background v § } 16

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Balls_p_norm.ipynb
https://fmin.xyz/docs/theory/balls_norm.mp4
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

p-norm of a vector
There are two very important special cases. The infinity norm, or Chebyshev norm is defined as the element of the
maximal absolute value:

∥x∥∞ = max
i
|xi|

L1 norm (or Manhattan distance) which is defined as the sum of modules of the elements of x:

∥x∥1 =
∑

i

|xi|

L1 norm plays a very important role: it all relates to the compressed sensing methods that emerged in the mid-00s
as one of the most popular research topics. The code for the picture below is available here:. Check also this video.

Figure 3: Balls in different norms on a plane
Basic linear algebra background v § } 16

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Balls_p_norm.ipynb
https://fmin.xyz/docs/theory/balls_norm.mp4
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix norms
In some sense there is no big difference between matrices and vectors (you can vectorize the matrix), and here comes
the simplest matrix norm Frobenius norm:

∥A∥F =

(
m∑

i=1

n∑
j=1

|aij |2
)1/2

Spectral norm, ∥A∥2 is one of the most used matrix norms (along with the Frobenius norm).

∥A∥2 = sup
x ̸=0

∥Ax∥2

∥x∥2
,

It can not be computed directly from the entries using a simple formula, like the Frobenius norm, however, there are
efficient algorithms to compute it. It is directly related to the singular value decomposition (SVD) of the matrix. It
holds

∥A∥2 = σ1(A) =
√

λmax(AT A)

where σ1(A) is the largest singular value of the matrix A.

Basic linear algebra background v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix norms
In some sense there is no big difference between matrices and vectors (you can vectorize the matrix), and here comes
the simplest matrix norm Frobenius norm:

∥A∥F =

(
m∑

i=1

n∑
j=1

|aij |2
)1/2

Spectral norm, ∥A∥2 is one of the most used matrix norms (along with the Frobenius norm).

∥A∥2 = sup
x ̸=0

∥Ax∥2

∥x∥2
,

It can not be computed directly from the entries using a simple formula, like the Frobenius norm, however, there are
efficient algorithms to compute it. It is directly related to the singular value decomposition (SVD) of the matrix. It
holds

∥A∥2 = σ1(A) =
√

λmax(AT A)

where σ1(A) is the largest singular value of the matrix A.

Basic linear algebra background v § } 17

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Scalar product

The standard scalar (inner) product between vectors x and y from Rn is given by

⟨x, y⟩ = xT y =
n∑

i=1

xiyi = yT x = ⟨y, x⟩

Here xi and yi are the scalar i-th components of corresponding vectors.

ñ Example

Prove, that you can switch the position of a matrix inside a scalar product with transposition: ⟨x, Ay⟩ =
⟨AT x, y⟩ and ⟨x, yB⟩ = ⟨xBT , y⟩

Basic linear algebra background v § } 18

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Matrix scalar product

The standard scalar (inner) product between matrices X and Y from Rm×n is given by

⟨X, Y ⟩ = tr(XT Y) =
m∑

i=1

n∑
j=1

XijYij = tr(Y T X) = ⟨Y, X⟩

ñ Question

Is there any connection between the Frobenious norm ∥ · ∥F and scalar product between matrices ⟨·, ·⟩?

Basic linear algebra background v § } 19

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Eigenvectors and eigenvalues

A scalar value λ is an eigenvalue of the n× n matrix A if there is a nonzero vector q such that

Aq = λq.

he vector q is called an eigenvector of A. The matrix A is nonsingular if none of its eigenvalues are zero. The
eigenvalues of symmetric matrices are all real numbers, while nonsymmetric matrices may have imaginary
eigenvalues. If the matrix is positive definite as well as symmetric, its eigenvalues are all positive real numbers.

Basic linear algebra background v § } 20

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Eigenvectors and eigenvalues
ñ Theorem

A ⪰ (≻)0⇔ all eigenvalues of A are ≥ (>)0

ñ Proof

1. → Suppose some eigenvalue λ is negative and let x denote its corresponding eigenvector. Then

Ax = λx→ xT Ax = λxT x < 0

which contradicts the condition of A ⪰ 0.

2. ← For any symmetric matrix, we can pick a set of eigenvectors v1, . . . , vn that form an
orthogonal basis of Rn. Pick any x ∈ Rn.

xT Ax = (α1v1 + . . . + αnvn)T A(α1v1 + . . . + αnvn)

=
∑

α2
i vT

i Avi =
∑

α2
i λiv

T
i vi ≥ 0

here we have used the fact that vT
i vj = 0, for i ̸= j.

Basic linear algebra background v § } 21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Eigenvectors and eigenvalues
ñ Theorem

A ⪰ (≻)0⇔ all eigenvalues of A are ≥ (>)0

ñ Proof

1. → Suppose some eigenvalue λ is negative and let x denote its corresponding eigenvector. Then

Ax = λx→ xT Ax = λxT x < 0

which contradicts the condition of A ⪰ 0.
2. ← For any symmetric matrix, we can pick a set of eigenvectors v1, . . . , vn that form an

orthogonal basis of Rn. Pick any x ∈ Rn.

xT Ax = (α1v1 + . . . + αnvn)T A(α1v1 + . . . + αnvn)

=
∑

α2
i vT

i Avi =
∑

α2
i λiv

T
i vi ≥ 0

here we have used the fact that vT
i vj = 0, for i ̸= j.

Basic linear algebra background v § } 21

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Eigendecomposition (spectral decomposition)

Suppose A ∈ Sn, i.e., A is a real symmetric n× n matrix. Then A can be factorized as

A = QΛQT ,

where Q ∈ Rn×n is orthogonal, i.e., satisfies QT Q = I, and Λ = diag(λ1, . . . , λn). The (real) numbers λi are the
eigenvalues of A and are the roots of the characteristic polynomial det(A− λI). The columns of Q form an
orthonormal set of eigenvectors of A. The factorization is called the spectral decomposition or (symmetric)
eigenvalue decomposition of A. 3

We usually order the eigenvalues as λ1 ≥ λ2 ≥ . . . ≥ λn. We use the notation λi(A) to refer to the i-th largest
eigenvalue of A ∈ S. We usually write the largest or maximum eigenvalue as λ1(A) = λmax(A), and the least or
minimum eigenvalue as λn(A) = λmin(A).

3A good cheat sheet with matrix decomposition is available at the NLA course website.
Basic linear algebra background v § } 22

https://nla.skoltech.ru/_files/decompositions.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Eigendecomposition (spectral decomposition)

Suppose A ∈ Sn, i.e., A is a real symmetric n× n matrix. Then A can be factorized as

A = QΛQT ,

where Q ∈ Rn×n is orthogonal, i.e., satisfies QT Q = I, and Λ = diag(λ1, . . . , λn). The (real) numbers λi are the
eigenvalues of A and are the roots of the characteristic polynomial det(A− λI). The columns of Q form an
orthonormal set of eigenvectors of A. The factorization is called the spectral decomposition or (symmetric)
eigenvalue decomposition of A. 3

We usually order the eigenvalues as λ1 ≥ λ2 ≥ . . . ≥ λn. We use the notation λi(A) to refer to the i-th largest
eigenvalue of A ∈ S. We usually write the largest or maximum eigenvalue as λ1(A) = λmax(A), and the least or
minimum eigenvalue as λn(A) = λmin(A).

3A good cheat sheet with matrix decomposition is available at the NLA course website.
Basic linear algebra background v § } 22

https://nla.skoltech.ru/_files/decompositions.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Eigendecomposition (spectral decomposition)

Suppose A ∈ Sn, i.e., A is a real symmetric n× n matrix. Then A can be factorized as

A = QΛQT ,

where Q ∈ Rn×n is orthogonal, i.e., satisfies QT Q = I, and Λ = diag(λ1, . . . , λn). The (real) numbers λi are the
eigenvalues of A and are the roots of the characteristic polynomial det(A− λI). The columns of Q form an
orthonormal set of eigenvectors of A. The factorization is called the spectral decomposition or (symmetric)
eigenvalue decomposition of A. 3

We usually order the eigenvalues as λ1 ≥ λ2 ≥ . . . ≥ λn. We use the notation λi(A) to refer to the i-th largest
eigenvalue of A ∈ S. We usually write the largest or maximum eigenvalue as λ1(A) = λmax(A), and the least or
minimum eigenvalue as λn(A) = λmin(A).

3A good cheat sheet with matrix decomposition is available at the NLA course website.
Basic linear algebra background v § } 22

https://nla.skoltech.ru/_files/decompositions.pdf
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Eigenvalues
The largest and smallest eigenvalues satisfy

λmin(A) = inf
x ̸=0

xT Ax

xT x
, λmax(A) = sup

x ̸=0

xT Ax

xT x

and consequently ∀x ∈ Rn (Rayleigh quotient):

λmin(A)xT x ≤ xT Ax ≤ λmax(A)xT x

The condition number of a nonsingular matrix is defined as

κ(A) = ∥A∥∥A−1∥

If we use spectral matrix norm, we can get:

κ(A) = σmax(A)
σmin(A)

If, moreover, A ∈ Sn
++: κ(A) = λmax(A)

λmin(A)

Basic linear algebra background v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Eigenvalues
The largest and smallest eigenvalues satisfy

λmin(A) = inf
x ̸=0

xT Ax

xT x
, λmax(A) = sup

x ̸=0

xT Ax

xT x

and consequently ∀x ∈ Rn (Rayleigh quotient):

λmin(A)xT x ≤ xT Ax ≤ λmax(A)xT x

The condition number of a nonsingular matrix is defined as

κ(A) = ∥A∥∥A−1∥

If we use spectral matrix norm, we can get:

κ(A) = σmax(A)
σmin(A)

If, moreover, A ∈ Sn
++: κ(A) = λmax(A)

λmin(A)

Basic linear algebra background v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Eigenvalues
The largest and smallest eigenvalues satisfy

λmin(A) = inf
x ̸=0

xT Ax

xT x
, λmax(A) = sup

x ̸=0

xT Ax

xT x

and consequently ∀x ∈ Rn (Rayleigh quotient):

λmin(A)xT x ≤ xT Ax ≤ λmax(A)xT x

The condition number of a nonsingular matrix is defined as

κ(A) = ∥A∥∥A−1∥

If we use spectral matrix norm, we can get:

κ(A) = σmax(A)
σmin(A)

If, moreover, A ∈ Sn
++: κ(A) = λmax(A)

λmin(A)

Basic linear algebra background v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Eigenvalues
The largest and smallest eigenvalues satisfy

λmin(A) = inf
x ̸=0

xT Ax

xT x
, λmax(A) = sup

x ̸=0

xT Ax

xT x

and consequently ∀x ∈ Rn (Rayleigh quotient):

λmin(A)xT x ≤ xT Ax ≤ λmax(A)xT x

The condition number of a nonsingular matrix is defined as

κ(A) = ∥A∥∥A−1∥

If we use spectral matrix norm, we can get:

κ(A) = σmax(A)
σmin(A)

If, moreover, A ∈ Sn
++: κ(A) = λmax(A)

λmin(A)
Basic linear algebra background v § } 23

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Singular value decomposition
Suppose A ∈ Rm×n with rank A = r. Then A can be factored as

A = UΣV T

where U ∈ Rm×r satisfies UT U = I, V ∈ Rn×r satisfies V T V = I, and Σ is a diagonal matrix with
Σ = diag(σ1, ..., σr), such that

σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

This factorization is called the singular value decomposition (SVD) of A. The columns of U are called left singular
vectors of A, the columns of V are right singular vectors, and the numbers σi are the singular values. The singular
value decomposition can be written as

A =
r∑

i=1

σiuiv
T
i ,

where ui ∈ Rm are the left singular vectors, and vi ∈ Rn are the right singular vectors.

Basic linear algebra background v § } 24

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Singular value decomposition
Suppose A ∈ Rm×n with rank A = r. Then A can be factored as

A = UΣV T

where U ∈ Rm×r satisfies UT U = I, V ∈ Rn×r satisfies V T V = I, and Σ is a diagonal matrix with
Σ = diag(σ1, ..., σr), such that

σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

This factorization is called the singular value decomposition (SVD) of A. The columns of U are called left singular
vectors of A, the columns of V are right singular vectors, and the numbers σi are the singular values. The singular
value decomposition can be written as

A =
r∑

i=1

σiuiv
T
i ,

where ui ∈ Rm are the left singular vectors, and vi ∈ Rn are the right singular vectors.

Basic linear algebra background v § } 24

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Singular value decomposition
Suppose A ∈ Rm×n with rank A = r. Then A can be factored as

A = UΣV T

where U ∈ Rm×r satisfies UT U = I, V ∈ Rn×r satisfies V T V = I, and Σ is a diagonal matrix with
Σ = diag(σ1, ..., σr), such that

σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

This factorization is called the singular value decomposition (SVD) of A. The columns of U are called left singular
vectors of A, the columns of V are right singular vectors, and the numbers σi are the singular values. The singular
value decomposition can be written as

A =
r∑

i=1

σiuiv
T
i ,

where ui ∈ Rm are the left singular vectors, and vi ∈ Rn are the right singular vectors.

Basic linear algebra background v § } 24

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Singular value decomposition
Suppose A ∈ Rm×n with rank A = r. Then A can be factored as

A = UΣV T

where U ∈ Rm×r satisfies UT U = I, V ∈ Rn×r satisfies V T V = I, and Σ is a diagonal matrix with
Σ = diag(σ1, ..., σr), such that

σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

This factorization is called the singular value decomposition (SVD) of A. The columns of U are called left singular
vectors of A, the columns of V are right singular vectors, and the numbers σi are the singular values. The singular
value decomposition can be written as

A =
r∑

i=1

σiuiv
T
i ,

where ui ∈ Rm are the left singular vectors, and vi ∈ Rn are the right singular vectors.

Basic linear algebra background v § } 24

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Singular value decomposition

ñ Question

Suppose, matrix A ∈ Sn
++. What can we say about the connection between its eigenvalues and singular

values?

ñ Question

How do the singular values of a matrix relate to its eigenvalues, especially for a symmetric matrix?

Basic linear algebra background v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Singular value decomposition

ñ Question

Suppose, matrix A ∈ Sn
++. What can we say about the connection between its eigenvalues and singular

values?

ñ Question

How do the singular values of a matrix relate to its eigenvalues, especially for a symmetric matrix?

Basic linear algebra background v § } 25

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A = UV T A = ĈÂ−1R̂

The latter expression refers to the fun fact: you can randomly choose r linearly
independent columns of a matrix and any r linearly independent rows of a matrix
and store only them with the ability to reconstruct the whole matrix exactly.
Use cases for Skeleton decomposition are:

• Model reduction, data compression, and speedup of computations in
numerical analysis: given rank-r matrix with r ≪ n, m one needs to store
O((n + m)r)≪ nm elements.

• Feature extraction in machine learning, where it is also known as matrix
factorization

• All applications where SVD applies, since Skeleton decomposition can be
transformed into truncated SVD form.

Figure 4: Illustration of Skeleton
decomposition

Basic linear algebra background v § } 26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A = UV T A = ĈÂ−1R̂

The latter expression refers to the fun fact: you can randomly choose r linearly
independent columns of a matrix and any r linearly independent rows of a matrix
and store only them with the ability to reconstruct the whole matrix exactly.

Use cases for Skeleton decomposition are:

• Model reduction, data compression, and speedup of computations in
numerical analysis: given rank-r matrix with r ≪ n, m one needs to store
O((n + m)r)≪ nm elements.

• Feature extraction in machine learning, where it is also known as matrix
factorization

• All applications where SVD applies, since Skeleton decomposition can be
transformed into truncated SVD form.

Figure 4: Illustration of Skeleton
decomposition

Basic linear algebra background v § } 26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A = UV T A = ĈÂ−1R̂

The latter expression refers to the fun fact: you can randomly choose r linearly
independent columns of a matrix and any r linearly independent rows of a matrix
and store only them with the ability to reconstruct the whole matrix exactly.
Use cases for Skeleton decomposition are:
• Model reduction, data compression, and speedup of computations in

numerical analysis: given rank-r matrix with r ≪ n, m one needs to store
O((n + m)r)≪ nm elements.

• Feature extraction in machine learning, where it is also known as matrix
factorization

• All applications where SVD applies, since Skeleton decomposition can be
transformed into truncated SVD form.

Figure 4: Illustration of Skeleton
decomposition

Basic linear algebra background v § } 26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A = UV T A = ĈÂ−1R̂

The latter expression refers to the fun fact: you can randomly choose r linearly
independent columns of a matrix and any r linearly independent rows of a matrix
and store only them with the ability to reconstruct the whole matrix exactly.
Use cases for Skeleton decomposition are:
• Model reduction, data compression, and speedup of computations in

numerical analysis: given rank-r matrix with r ≪ n, m one needs to store
O((n + m)r)≪ nm elements.

• Feature extraction in machine learning, where it is also known as matrix
factorization

• All applications where SVD applies, since Skeleton decomposition can be
transformed into truncated SVD form.

Figure 4: Illustration of Skeleton
decomposition

Basic linear algebra background v § } 26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A = UV T A = ĈÂ−1R̂

The latter expression refers to the fun fact: you can randomly choose r linearly
independent columns of a matrix and any r linearly independent rows of a matrix
and store only them with the ability to reconstruct the whole matrix exactly.
Use cases for Skeleton decomposition are:
• Model reduction, data compression, and speedup of computations in

numerical analysis: given rank-r matrix with r ≪ n, m one needs to store
O((n + m)r)≪ nm elements.

• Feature extraction in machine learning, where it is also known as matrix
factorization

• All applications where SVD applies, since Skeleton decomposition can be
transformed into truncated SVD form.

Figure 4: Illustration of Skeleton
decomposition

Basic linear algebra background v § } 26

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Canonical tensor decomposition
One can consider the generalization of Skeleton decomposition to the higher order data structure, like tensors, which
implies representing the tensor as a sum of r primitive tensors.

Tensor 𝑻𝐼× 𝐽×𝐾

𝑎1

𝑏1
𝑐1

𝑎𝑟

𝑏𝑟
𝑐𝑟

𝐴𝐼× 𝑟 𝐵𝐽× 𝑟 𝐶𝐾× 𝑟

Figure 5: Illustration of Canonical Polyadic decomposition

ñ Example

Note, that there are many tensor decompositions: Canonical, Tucker, Tensor Train (TT), Tensor Ring
(TR), and others. In the tensor case, we do not have a straightforward definition of rank for all types of
decompositions. For example, for TT decomposition rank is not a scalar, but a vector.

Basic linear algebra background v § } 27

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Determinant and trace
The determinant and trace can be expressed in terms of the eigenvalues

detA =
n∏

i=1

λi, trA =
n∑

i=1

λi

The determinant has several appealing (and revealing) properties. For instance,
• detA = 0 if and only if A is singular;

• detAB = (detA)(detB);
• detA−1 = 1

det A
.

Don’t forget about the cyclic property of a trace for arbitrary matrices A, B, C, D (assuming, that all dimensions are
consistent):

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

ñ Question

How does the determinant of a matrix relate to its invertibility?

Basic linear algebra background v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Determinant and trace
The determinant and trace can be expressed in terms of the eigenvalues

detA =
n∏

i=1

λi, trA =
n∑

i=1

λi

The determinant has several appealing (and revealing) properties. For instance,
• detA = 0 if and only if A is singular;
• detAB = (detA)(detB);

• detA−1 = 1
det A

.

Don’t forget about the cyclic property of a trace for arbitrary matrices A, B, C, D (assuming, that all dimensions are
consistent):

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

ñ Question

How does the determinant of a matrix relate to its invertibility?

Basic linear algebra background v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Determinant and trace
The determinant and trace can be expressed in terms of the eigenvalues

detA =
n∏

i=1

λi, trA =
n∑

i=1

λi

The determinant has several appealing (and revealing) properties. For instance,
• detA = 0 if and only if A is singular;
• detAB = (detA)(detB);
• detA−1 = 1

det A
.

Don’t forget about the cyclic property of a trace for arbitrary matrices A, B, C, D (assuming, that all dimensions are
consistent):

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

ñ Question

How does the determinant of a matrix relate to its invertibility?

Basic linear algebra background v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Determinant and trace
The determinant and trace can be expressed in terms of the eigenvalues

detA =
n∏

i=1

λi, trA =
n∑

i=1

λi

The determinant has several appealing (and revealing) properties. For instance,
• detA = 0 if and only if A is singular;
• detAB = (detA)(detB);
• detA−1 = 1

det A
.

Don’t forget about the cyclic property of a trace for arbitrary matrices A, B, C, D (assuming, that all dimensions are
consistent):

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

ñ Question

How does the determinant of a matrix relate to its invertibility?

Basic linear algebra background v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Determinant and trace
The determinant and trace can be expressed in terms of the eigenvalues

detA =
n∏

i=1

λi, trA =
n∑

i=1

λi

The determinant has several appealing (and revealing) properties. For instance,
• detA = 0 if and only if A is singular;
• detAB = (detA)(detB);
• detA−1 = 1

det A
.

Don’t forget about the cyclic property of a trace for arbitrary matrices A, B, C, D (assuming, that all dimensions are
consistent):

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

ñ Question

How does the determinant of a matrix relate to its invertibility?

Basic linear algebra background v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Determinant and trace
The determinant and trace can be expressed in terms of the eigenvalues

detA =
n∏

i=1

λi, trA =
n∑

i=1

λi

The determinant has several appealing (and revealing) properties. For instance,
• detA = 0 if and only if A is singular;
• detAB = (detA)(detB);
• detA−1 = 1

det A
.

Don’t forget about the cyclic property of a trace for arbitrary matrices A, B, C, D (assuming, that all dimensions are
consistent):

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

ñ Question

How does the determinant of a matrix relate to its invertibility?

Basic linear algebra background v § } 28

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

First-order Taylor approximation

The first-order Taylor approximation, also known as the linear approximation, is
centered around some point x0. If f : Rn → R is a differentiable function, then
its first-order Taylor approximation is given by:

fI
x0 (x) = f(x0) +∇f(x0)T (x− x0)

Where:
• f(x0) is the value of the function at the point x0.

• ∇f(x0) is the gradient of the function at the point x0.
It is very usual to replace the f(x) with fI

x0 (x) near the point x0 for simple
analysis of some approaches. Figure 6: First order Taylor

approximation near the point x0

Basic linear algebra background v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

First-order Taylor approximation

The first-order Taylor approximation, also known as the linear approximation, is
centered around some point x0. If f : Rn → R is a differentiable function, then
its first-order Taylor approximation is given by:

fI
x0 (x) = f(x0) +∇f(x0)T (x− x0)

Where:
• f(x0) is the value of the function at the point x0.
• ∇f(x0) is the gradient of the function at the point x0.

It is very usual to replace the f(x) with fI
x0 (x) near the point x0 for simple

analysis of some approaches. Figure 6: First order Taylor
approximation near the point x0

Basic linear algebra background v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

First-order Taylor approximation

The first-order Taylor approximation, also known as the linear approximation, is
centered around some point x0. If f : Rn → R is a differentiable function, then
its first-order Taylor approximation is given by:

fI
x0 (x) = f(x0) +∇f(x0)T (x− x0)

Where:
• f(x0) is the value of the function at the point x0.
• ∇f(x0) is the gradient of the function at the point x0.

It is very usual to replace the f(x) with fI
x0 (x) near the point x0 for simple

analysis of some approaches. Figure 6: First order Taylor
approximation near the point x0

Basic linear algebra background v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

First-order Taylor approximation

The first-order Taylor approximation, also known as the linear approximation, is
centered around some point x0. If f : Rn → R is a differentiable function, then
its first-order Taylor approximation is given by:

fI
x0 (x) = f(x0) +∇f(x0)T (x− x0)

Where:
• f(x0) is the value of the function at the point x0.
• ∇f(x0) is the gradient of the function at the point x0.

It is very usual to replace the f(x) with fI
x0 (x) near the point x0 for simple

analysis of some approaches. Figure 6: First order Taylor
approximation near the point x0

Basic linear algebra background v § } 29

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Second-order Taylor approximation

The second-order Taylor approximation, also known as the quadratic
approximation, includes the curvature of the function. For a twice-differentiable
function f : Rn → R, its second-order Taylor approximation centered at some
point x0 is:

fII
x0 (x) = f(x0) +∇f(x0)T (x− x0) + 1

2(x− x0)T∇2f(x0)(x− x0)

Where ∇2f(x0) is the Hessian matrix of f at the point x0.

When using the linear approximation of the function is not sufficient one can
consider replacing the f(x) with fII

x0 (x) near the point x0. In general, Taylor
approximations give us a way to locally approximate functions. The first-order
approximation is a plane tangent to the function at the point x0, while the
second-order approximation includes the curvature and is represented by a
parabola. These approximations are especially useful in optimization and
numerical methods because they provide a tractable way to work with complex
functions.

Figure 7: Second order Taylor
approximation near the point x0

Basic linear algebra background v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Second-order Taylor approximation

The second-order Taylor approximation, also known as the quadratic
approximation, includes the curvature of the function. For a twice-differentiable
function f : Rn → R, its second-order Taylor approximation centered at some
point x0 is:

fII
x0 (x) = f(x0) +∇f(x0)T (x− x0) + 1

2(x− x0)T∇2f(x0)(x− x0)

Where ∇2f(x0) is the Hessian matrix of f at the point x0.
When using the linear approximation of the function is not sufficient one can
consider replacing the f(x) with fII

x0 (x) near the point x0. In general, Taylor
approximations give us a way to locally approximate functions. The first-order
approximation is a plane tangent to the function at the point x0, while the
second-order approximation includes the curvature and is represented by a
parabola. These approximations are especially useful in optimization and
numerical methods because they provide a tractable way to work with complex
functions.

Figure 7: Second order Taylor
approximation near the point x0

Basic linear algebra background v § } 30

https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Exercises

• Linear Least Squares

• 3Stupid, but important idea on matrix multiplication
• 3Problems
• How to calculate minimum and maximum eigenvalue of the hessian matrix of linear least squares problem?

What about binary logistic regression?

Basic linear algebra background v § } 31

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Real_world_LLS_exercise.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/stupid_important_idea_on_mm.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Simple_nla_theoretical_questions.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Exercises

• Linear Least Squares
• 3Stupid, but important idea on matrix multiplication

• 3Problems
• How to calculate minimum and maximum eigenvalue of the hessian matrix of linear least squares problem?

What about binary logistic regression?

Basic linear algebra background v § } 31

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Real_world_LLS_exercise.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/stupid_important_idea_on_mm.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Simple_nla_theoretical_questions.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Exercises

• Linear Least Squares
• 3Stupid, but important idea on matrix multiplication
• 3Problems

• How to calculate minimum and maximum eigenvalue of the hessian matrix of linear least squares problem?
What about binary logistic regression?

Basic linear algebra background v § } 31

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Real_world_LLS_exercise.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/stupid_important_idea_on_mm.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Simple_nla_theoretical_questions.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

Exercises

• Linear Least Squares
• 3Stupid, but important idea on matrix multiplication
• 3Problems
• How to calculate minimum and maximum eigenvalue of the hessian matrix of linear least squares problem?

What about binary logistic regression?

Basic linear algebra background v § } 31

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Real_world_LLS_exercise.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/stupid_important_idea_on_mm.ipynb
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Simple_nla_theoretical_questions.ipynb
https://fmin.xyz
https://mda24.fmin.xyz
https://github.com/MerkulovDaniil/mda24
https://t.me/fminxyz

	Optimization problems
	CVXPY Library
	Basic linear algebra background

